

Influence factor analysis of space debris lifetime estimation for low and near circular orbits

Zhang Yao, Liu Jing, Li Dawei National Astronomical Observatories of China

Outlines

- Background
- Influence Factors Analysis
- Result Validation
- Conclusion

Background

- Every year hundreds of space objects decayed and re-entry to dense atmosphere.
- Some large objects may not burnout and may hit on earth.

Background

- Space objects decay include 2 stages
 - From current state to 120km height(focus)
 - From 120km height to the end
 - Lifetime estimation must be fast

Influence Factors Analysis

Acceleration due to atmosphere drag

$$\vec{\mathbf{a}}_{drag} = -\frac{1}{2} \frac{C_D A}{m} \rho v_{rel}^2 \frac{\vec{v}_{rel}}{\left| \vec{v}_{rel} \right|}$$

Equations for the effects of drag

$$\frac{da}{dt} = -\frac{a^2 C_D A_1 \rho v^3}{\mu}$$
$$\frac{de}{dt} = -(e + \cos \theta) C_D A \rho v$$

Main factors: (1)Atmosphere density (2)Area to mass ratio (3)Coefficient of drag

Use perigee as threshold to stop the estimation

Atmosphere density

Density is decided by

- Atmosphere model
- Geographic position and space weather

Model of atmosphere selection

Model	Characteristic	Range(km)	Relative runtime
CIRA-72	Semi-theoretical technique	25500	1
Jacchia-Robert	Popular model in military operations	702500	14
NRLMEIS-00	Base on air-glow temperatures and incoherent radar scatter, high accuracy	0-2000	200

Chose NRLMEIS-00 model

Atmosphere density

Different height and position have different atmosphere density

Inclination and RAAN perturbation must be compute

Atmosphere density

Space weather is considered

- Lifetime span may be months or years, space weather may change a lot.
- Solar flux variation use the textbook from http://celestrak.com

Area to mass ratio(AMR)

 The secular changes of semi-major axis are used to estimate the AMR:

$$\Delta a = \left(\frac{da}{dt}\right)_{\text{average-atmosphere}} * \Delta t + \left(\frac{da}{dt}\right)_{\text{average-radiation}} * \Delta t = \left(\alpha A_1 + \beta A_2\right) \Delta t$$

 supposing that N pieces of orbit data can be used in the estimation, so N-1 equations can be established.

$$\Delta a_i = (\alpha_i A_1 + \beta_i A_2) \Delta t_i, i = 1, 2 \cdots N - 1$$

Least square method is used to solve the equations

Coefficient of drag

 Coefficient of drag change a lot when re-entry to dense atmosphere, but we focus on stage 1 that Coefficient of drag can be considered as constant 2.2.

Equation of lifetime estimation

$$\begin{bmatrix} \frac{da}{dt} = -\frac{a^2 C_D A_1 \rho v^3}{\mu} \\ \frac{de}{dt} = -(e + \cos \theta) C_D A \rho v \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{da}{dt}_{ave} = -\frac{\sigma}{\pi \mu \sqrt{1 - e^2}} \int_0^{2\pi} r^2 v^3 \rho d\theta \\ \frac{de}{dt}_{ave} = -\frac{\sigma}{\pi a^2 \sqrt{1 - e^2}} \int_0^{2\pi} r^2 v \rho (e + \cos \theta) d\theta \\ \frac{di}{dt} = 0 \\ \frac{d\Omega}{dt} = -\frac{3n R_e^2 J_2}{2p^2} \cos(i) \end{bmatrix}$$

- Runge-kutta (4 order) integrator are used
- Fix the semi-major axis change in each integrate step Δa , the time of step is conpute by $\Delta t = \Delta a / \Delta a_{ave}$

Result Validation

Select 5 space objects that already decayed, their information are as flows

Number	Name	Semi-major axis(km)	Eccentricity	Re-entry time
28642	DART	6769.817	0.00930	2016-05-07
26481	JB 3A	6742.627	0.00043	2016-03-11
32765	C/NOFS	6820.914	0.01247	2015-11-28
25064	ETS 7	6757.679	0.00053	2015-11-13
13818	Cosmos 1441	6785. 577	0.00020	2014-11-8

Lifetime estimation result:

Number	Estimate AMR (M ² /kg)	Estimation start epoch	Estimate re-entry epoch	error
28642	0.00518	2015-05-01	2016-06-15	38 days,6%
26481	0.00310	2015-01-01	2016-01-16	53 days, 11%
32765	0.01174	2015-01-07	2015-12-2	4 days,8%
25064	0.00565	2015-01-01	2015-10-15	44 days, 15%
13818	0.00558	2013-11-02	2014-11-07	1 days, 1%

Conclusion

- The factors that influence the lifetime of space object are analyzed;
- Lifetime estimation model are established and validated;
- We can change Δa to accelerate or reduce the time consuming in lifetime estimation.

Thank You!

yaozh@bao.ac.cn