

Calculating the Re-Entry Probability for a given Area of Interest

01.03.2018

Jens Agena⁽¹⁾

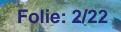
(1) **DLR**

Knowledge for Tomorrow

Introduction

Sequence of Operations

Monte Carlo Simulations


Filter Techniques

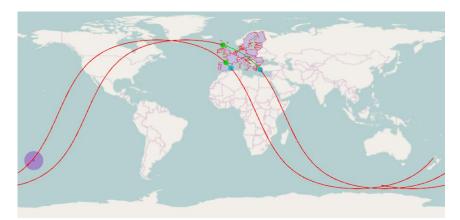
Re-Entry Probability

Results

Conclusion

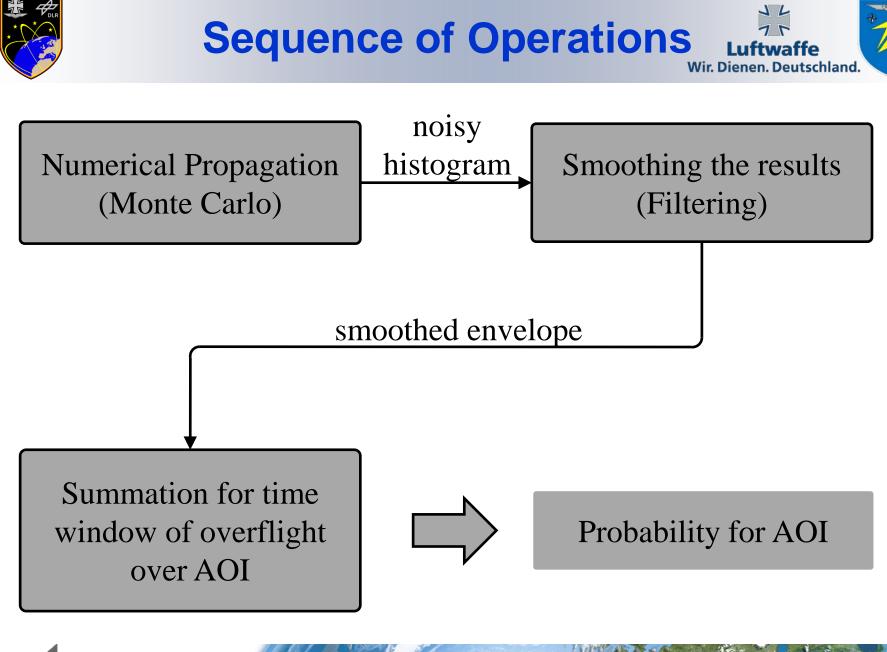
Re-Entry calculations are part of daily business at GSSAC

Development of an analysis mode


- Reduce number of false positive alerts
- Calculate re-entry probability for a given area of interest

Approach:

- Monte Carlo Simulations
- Combined with filter techniques


Currently:

• Use TIP from JSpoC

Folie: 4/22

Analysis mode can run various number of MC simulations

Applying a independent normal distribution to

- Satellite Position
- Satellite Velocity
- Ballistic Coefficient
- Solar Radiation Pressure Coefficient

Tests have shown that 1000 MC runs result in a sufficient number of data sets (re-entry COIW + position)


Characteristic curve for a remaining life time less than one day

Folie: 5/22

h(n)

n

A raised cosine filter was implemented to reduce the noise of the derived MC data

- Non-negative impulse response (NNIR) filter
- Leaned on Hann function

$$h(n) = \cos\left(n \cdot \frac{f_c}{f_s} \cdot 2\pi\right) + 1$$

Function has to be normalised and cut at its first minimum to get a low-pass filter.

$$h(n) = 0 \forall |n| > \frac{1}{2} \frac{f_s}{f_c}$$

Folie: 8/22

h(n)

$$h(n) = \cos\left(n \cdot \frac{f_c}{f_s} \cdot 2\pi\right) + 1$$

Cut-off frequency f_c is depended on the shape of the current orbit and will be calculated by using a FFT

Filter Techniques

• Aim is to find the envelope of the derived MC data

Sample frequency f_s is depend off the time difference of the raw histogram data: $f_s = \frac{1}{dt}$

Applying the filter on the raw data leads to the smoothed probability distribution p(t)

$$x(t) \longrightarrow h(n) \longrightarrow p(t)$$

Folie: 9/22

Received probability distribution is located in the time domain

• The time window of an overflight can be used to calculate re-entry probability for the given area of interest

$$p_{\rm win} = \sum_{t=t_{\rm start}}^{t_{\rm end}} p(t)$$

If there is more than one overflight the probabilities of the separate windows have to be added up

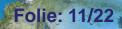
A probability corresponding to the time of the overflight is calculated to make results comparable

Example for overflights over the EU:

• Molnya 3-51on 19.12.2016

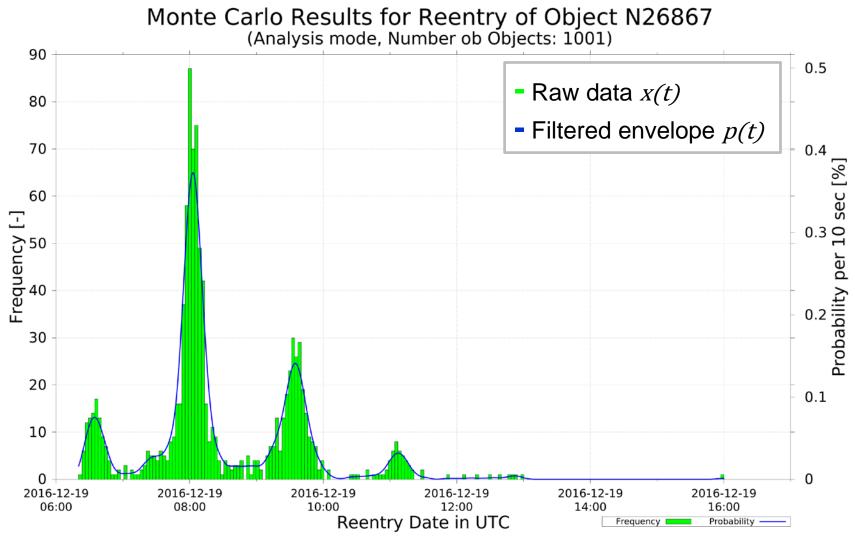
#	start	end	probability	rel. probability
1	07:24:21	07:32:55	0.0152	2.96·10 ⁻⁰⁵ 1/s
2	09:04:01	09:05:36	0.0023	2.42·10 ⁻⁰⁵ 1/s
Σ			0.0175	2.87·10 ⁻⁰⁵ 1/s

More simulations are needed to set a suitable threshold

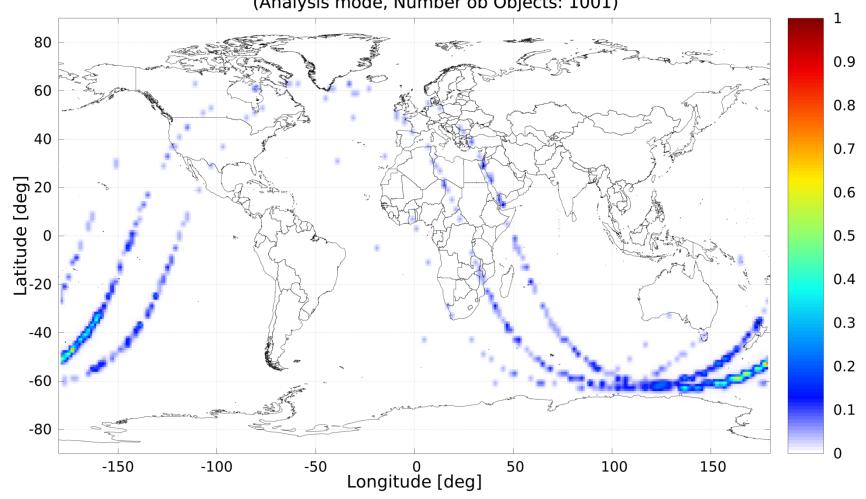


Example: Eccentric Orbit

Name	Value
satellite name	MOLNIYA 3-51
International Designator	2001-030A
NORAD ID	26867
decay day	2016-12-19
decay time (TIP)	06:43:00
orbit data epoch	2016-12-18T23:45:22
Period	99.55 min
Inclination	62.42°
Ародее	1400.09 km
Perigee	88.55 km
Eccentricity	0.09216



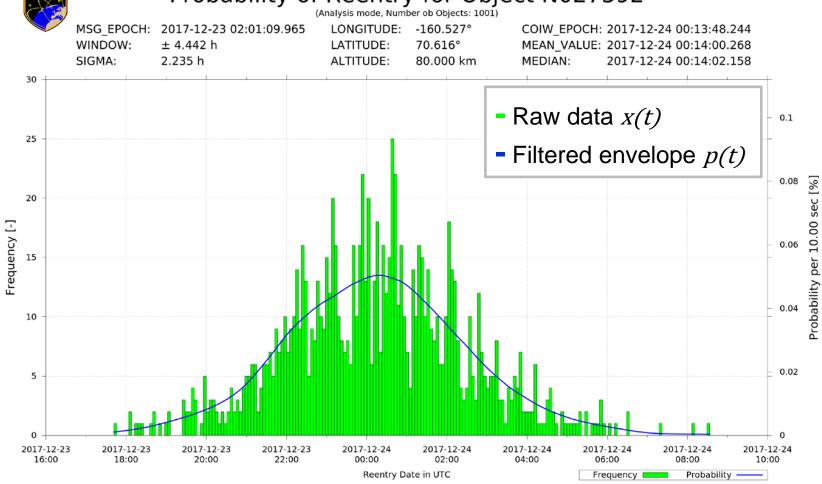
Folie: 12/22



Folie: 13/22

Example: Circular Orbit

Name		Value
satellite name		GRACE 2
International Designator		2002-012B
NORADID		27392
decay day		2017-12-24
decay time (TIP)		00:16:00
orbit data epoch	2017-12-23T02:01:10	2017-12-23T22:49:47
Period		87.14 min
Inclination		88.97°
Ародее		134.03 km
Perigee		131.42 km
Eccentricity		0.00020

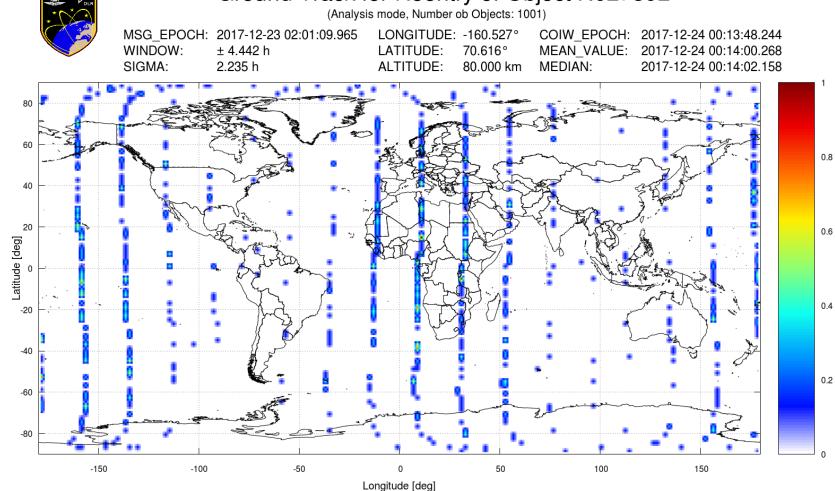


Probability of Reentry for Object N027392

Source: GSSAC

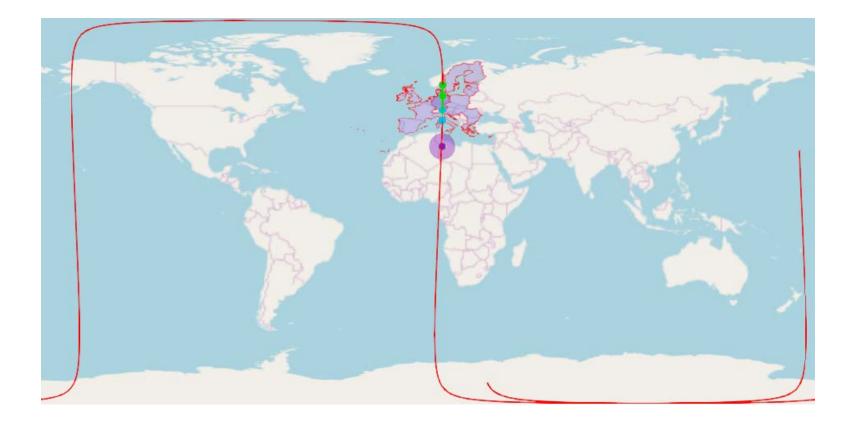
© Weltraumlagezentrum, Uedem, 2017-12-23 04:18:31 UTC

Folie: 15/22

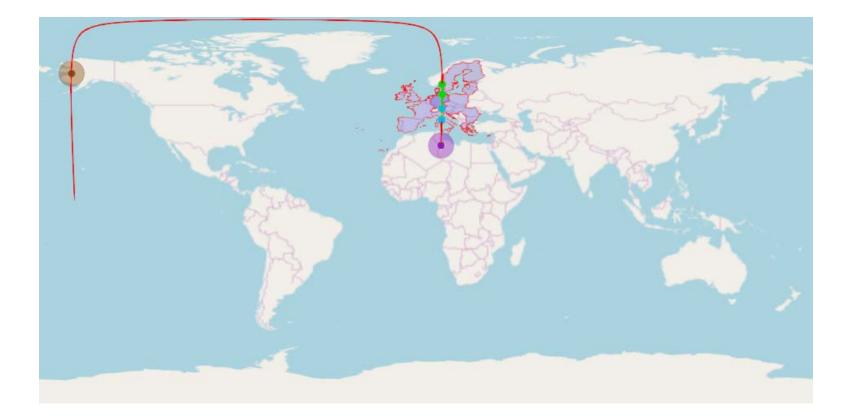


Folie: 16/22

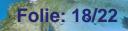
Ground Track for Reentry of Object N027392



Folie: 17/22



DLR



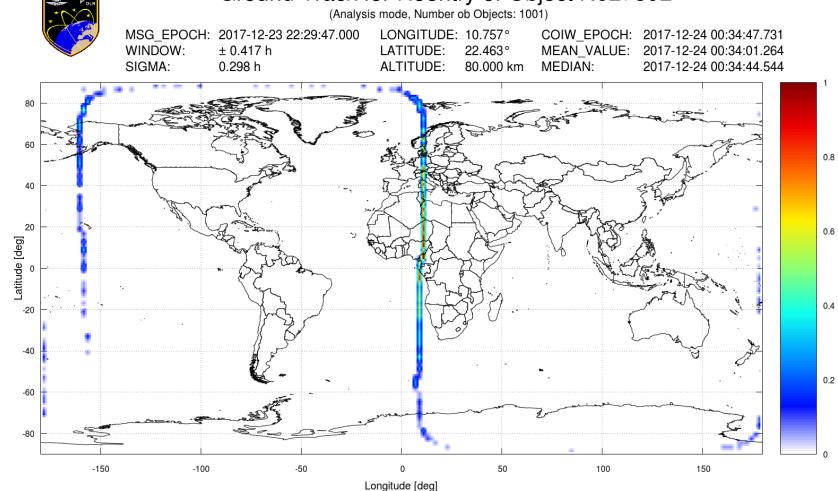
DLR

Probability of Reentry for Object N027392 (Analysis mode, Number ob Objects: 1001) MSG EPOCH: 2017-12-23 22:29:47.000 LONGITUDE: 10.757° COIW_EPOCH: 2017-12-24 00:34:47.731 WINDOW: 22.463° MEAN VALUE: 2017-12-24 00:34:01.264 ± 0.417 h LATITUDE: 0.298 h SIGMA: ALTITUDE: 80.000 km MEDIAN: 2017-12-24 00:34:44.544 25 0.7 - Raw data x(t)0.6 - Filtered envelope p(t)20 0.5 Probability per 9.99 sec [%] 15 Frequency [-] 0.4 0.3 10 0.2 5 0.1 0 2017-12-23 2017-12-23 2017-12-24 2 23:50 00:00 23:40 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 Reentry Date in UTC Frequency Probability -

Source: GSSAC

© Weltraumlagezentrum, Uedem, 2017-12-24 01:17:17 UTC

Folie: 19/22



Folie: 20/22

Ground Track for Reentry of Object N027392

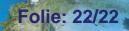
The results show potential to improve the prediction and assessment of re-entries

- Even more reliable with better input values
- Calculations should start at around one day before the final re-entry

In the future it is planned to use the following inputs:

- Covariance information derived from OD
- Variation of ballistic coefficient

A threshold for the re-entry probability shall be derived by analyzing more re-entry events.


Weltraumlagezentrum

Thank you for your attention

