

# Advanced methods for break-up uncertainty propagation

### March 1<sup>st</sup> 2018, Vincent Morand, 4th International Workshop on Space Debris Reentry



# Increasing need for uncertainty propagation technics

#### **Space Debris applications:**

- □ Increasing number of Space Debris
- Improvement of detection capability (Space Fence)
- □ Bad knowledge of shapes, mass, orbit...
- → Requires efficient methods (> Monte Carlo...)

#### **Regulations:**

□ French Space Operations Act, IADC, etc.. release rules or

guidelines

#### $\rightarrow$ Need for robust results

Sub-section 2 - Quantitative objectives for human safety

#### Article 20 - Quantitative objectives for human safety

1. For the cumulative catastrophic damage risks, the launch operator must respect the following quantitative objectives, expressed as a maximum allowable probability of causing at least one casualty (collective risk):

a) <u>Lift-off risk</u>





# CNES activities w.r.t. Uncertainty propagation

Few R&T actions for Uncertainties propagation in Space Flight Dynamics:

2014: R&T action with Thales Services: Taylor Differential Algebra (TDA) for long term orbit propagation

(<u>Ref.</u> : AAS-15-518 :"Using Taylor Differential Algebra in mission analysis: Benefits and Drawbacks." AAS/AIAA Astrodynamics Specialist Conference, August 9–13, 2015)

**2015 / 2016 : R&T action with Thales Services :** 

**TDA for atmospheric re-entry** 

(Ref. : AAS-16-263 :"Re-entry prediction and analysis using Taylor Differential Algebra" AAS/AIAA)

**2016 / 2017: R&T action with Thales Services and INRIA :** 

#### **PCE for uncertainty propagation**

(Ref. : AAS-17-233: "CNES ACTIVITES ON POLYNOMIAL CHAOS EXPANSION FOR UNCERTAINTY PROPAGATION ")

2018 - ... : R&T action with Thales Services and INRIA Kriging methods Today's presentation limited to two example for atmospheric re-entry



Slide 3

# **Taylor Differential Algebra**

□ Main TDA application : image of an initial domain (uncertainty...) by f



#### **D** TDA is:

- □ An intrusive method: source code has to be rewritten
- A local method : the solution is "expanded" around a reference point (Taylor Development...)

$$f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + (x - x_0)^T \nabla^2 f(x_0) (x - x_0)^T$$



# **TDA : basic understanding**

**Classic formulation** 

$$\begin{cases} \frac{dx}{dt} = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

□ Replace the initial condition by a first order polynomial of the state x:

$$X_0(x) = x_0 + (x - x_0)$$

**Constant part Polynomial part** 

□ Define basic operators (+,-,\*, /) for polynomials

Ν

□ Rewrite complex functions (exp, sin, cos) using Taylor development

$$f(x) = \sum_{k=0}^{N} D^{k} f(x_{0}) (x - x_{0})^{k} + o(||x - x_{0}||)^{N}$$

□ After integration of the ODE, the result is a polynomial of the state x

$$X_f(x) = x_f + p_1(x - x_0) + p_2(x - x_0)^2 + \dots$$
 Constant part  
Polynomial part (up to order N)

 $\rightarrow$  To get the results corresponding to another initial condition x1 one has just to evaluate the final polynomial : Xf(x1)



## **ELECTRA** Tool

Estimation de la Létalité due aux Evénements Catastrophiques sur Trajectoires Rentrant dans l'Atmosphère)



### SWOT satellite test case

We retrieve the 4th order polynomials describing the position of the impact point:

$$\begin{aligned} \int c_{1} c_{1} de &= long_{0} + \sum_{i} c_{i} (\varepsilon_{1} - \varepsilon_{1,0})^{p_{i1}} (\varepsilon_{2} - \varepsilon_{2,0})^{p_{i2}} \dots (\varepsilon_{12} - \varepsilon_{12,0})^{p_{i12}} \\ latitude &= lat_{0} + \sum_{i} c_{i} (\varepsilon_{1} - \varepsilon_{1,0})^{p_{i1}} (\varepsilon_{2} - \varepsilon_{2,0})^{p_{i2}} \dots (\varepsilon_{12} - \varepsilon_{12,0})^{p_{i12}} \\ altitude &= 50 \end{aligned}$$

Impact longitude without  $Long_0$  : dispersion Lat<sub>o</sub>: Impact latitude without dispersion  $\underline{\varepsilon}_k$ : dispersed parameters (12 of them) : nominal value of dispersed  $\varepsilon_{k,0}$ parameters ci: 1820 coefficients for longitude, same



| Dispersed parameters εk |                       |          |                                                                                               |
|-------------------------|-----------------------|----------|-----------------------------------------------------------------------------------------------|
|                         | 200 – 980 km<br>orbit | Gaussian | On position and velocity:<br>$\sigma^* \sqrt{3}$ with $\sigma = 5$ m and $\sigma = 5$<br>cm/s |
|                         | 60 N                  | Uniform  | ± 8 %                                                                                         |
|                         | Opposite to velocity  | Gaussian | 3° in the direction and 3° transversal to commanded $\Delta V$                                |
|                         | 75 km                 | Uniform  | ± 5 km                                                                                        |
|                         | 1                     | Uniform  | ± 50 %                                                                                        |
|                         | 0.                    | Uniform  | ± 180°                                                                                        |
|                         |                       |          |                                                                                               |

for latitude



Slide 7

# SWOT satellite test case : **Roll dispersion**

267.5 268

Longitude

268.5 269



#### Computation of the polynomial 30 times faster than a 20000 Electra MC $\rightarrow$

- Analysis of coefficients give "ANOVA-like" information
- Singularity in the attitude law makes TDA not very well suited to this application  $\rightarrow$ (Further study could solve the issue)
- → At this time, TDA is being studied for "simpler" applications (Perturbed Lambert problem, covariance propagation...) Slide 8





-0.8 -0.6 -0.4

Longitude gap, deg

# Polynomial Chaos Expansion (PCE)

#### No "Chaos" here

- **D** Evolution of an initial domain
- □ Problem is assumed to be deterministic
- (same inputs  $\rightarrow$  same outputs)
- **Ouput is modeled as a multivariate polynomials**

#### Non intrusive method



Orbit propagation Collision risk estimation Casualty area computation ...Today: DEBRISK

#### Distribution de $\xi$ Polynôme $\Psi$ Support Gaussien Hermite $(-\infty, +\infty)$ Gamma Laguerre $[0,\infty)$ Beta Jacobi [a, b]Uniforme Legendre [a, b]Poisson Charlier $\{0, 1, \dots\}$ Binomiale Krawtchouk $\{0, 1, \ldots, n\}$ **Binomiale Négative** Meixner $\{0, 1, \dots\}$ Hypergéométrique Hahn $\{0, 1, \dots, n\}$

Output



□ Global method (polynomial surrogate over a domain)

- □ Widely used in the industry (EDF, Total...)
- □ Strong mathematical basis
- Existing competences and toolbox









## Debrisk test cases

### Monte Carlo simulation as reference (5000 samples) PCE computation (~ 400 samples, expansion order selected)

|                             | $i [^{\circ}]$                      | Ω [°]                           | $\omega$ [°]                    | $M [^{\circ}]$                  | $h_{frag} \ [km]$                   | $C_D$ [-]                          | $C_{\rho}$ [-]                     |
|-----------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------|------------------------------------|------------------------------------|
| Delta-II                    | $\mathcal{U}\left(95.6,97.6\right)$ | $\mathcal{U}\left(0, 360 ight)$ | $\mathcal{U}\left(0, 360 ight)$ | $\mathcal{U}\left(0, 360 ight)$ | $\mathcal{U}(73,78)$                | $\mathcal{U}\left(0.6, 1.4 ight)$  | -                                  |
| Sobol Indexes<br>Validation | $\mathcal{U}\left(0,180 ight)$      | -                               | -                               | -                               | $\mathcal{U}(73,78)$                | $\mathcal{U}\left(0.6, 1.4\right)$ | $\mathcal{U}\left(0.6, 1.4\right)$ |
| Cas Satellite               | $\mathcal{U}(44,46)$                | -                               | -                               | $\mathcal{U}\left(0, 360 ight)$ | $\mathcal{U}\left(75.5,80.5\right)$ | $\mathcal{U}\left(0.6, 1.4 ight)$  | $\mathcal{U}\left(0.6, 1.4 ight)$  |

- US 76 atmospheric model is used for DELTAII/Satellite (on going simulation with MSIS model)
- U We are interested in:
  - **Global ablation rate (TAG in French)**
  - Total casualty area
  - □ Knowing what are the main contributors : ANOVA

$$\mathsf{TAG} = \frac{\sum_{i=1}^{N} h_{fin_i}}{N h_{frag}} - \frac{\sum_{i=1}^{N} m_{g_i}}{\sum_{i=1}^{N} m_{b_i}}$$

$$CA = \sum_{i=1}^{N} CA_i$$



# Delta II test case

#### MC 0.9 10 0.8 **Global ablation rate** 0.7 8 **Bi-modal distribution** 0.6 MC CDF PDF PCE Order 6 0.5 Nice PCE approximation but Nominal Value 0.4 limited due to the bi-modal հհես 0.3 distribution 0.2 2 0.1 0 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -1 TAG [-TAG [-**Casualty area** MC 0.9 **Discrete results** 0.8 PCE is not appropriate 0.7 0.6 CDF PDF 0.5 3 0.4 2 0.3 MC 0.2 PCE Order 6 Nominal Value 0.1 15 20 25 30 35 16 18 20 22 24 26 28 10 Casualty Area $[m^2]$ Casualty Area $[m^2]$ Slide 11 cnes

# Sobol indexes validation





#### **Polynomial Chaos Expansion allows efficient ANOVA** Small differences on the numerical values but the order of magnitude are obtained



# Satellite test case

### □Global ablation rate

Great PCE approximation 

#### **Casualty area**

PCE give a "smooth" distribution function

 $\rightarrow$  PCE is interesting to get the shape of the CDF faster than through Monte Carlo





0.7 0.75

10 12

8

0.8 0.85 0.9 0.95

MC

14 16

# **Kriging Methods**

#### □ On going action

- Interpolation method
- Estimate of the error of the surrogate model
- To be tested on ELECTRA and DEBRISK

**Toblers 1st Law of Geography**: Everything is related to everything else, but near things are more related than distant things !





### Conclusions

#### Several uncertainty propagation methods are under evaluation

- TDA: Intrusive local method, maybe not the most suited one for complex atmospheric re-entry code
- PCE : non-intrusive global method, suited for smooth non-discrete problems, very efficient for ANOVA Analysis
- Kriging methods: to be evaluated, interpolation methods with an estimate of the error of the surrogate model



User Registration & Service Request https://sst.satcen.europa.eu

Helpdesk sst.helpdesk@satcen.europa.eu

General Information <u>www.eusst.eu</u>