

Activities of the AeroThermoDynamics & Design for Demise (ATD³) Working Group

<u>Jeroen Van den Eynde</u> (ESA) Luca Ferracina (ESA) Guillaume Prigent (CNES)

4th International Workshop on Space Debris Re-entry 28 Feb – 01 Mar 2018, ESOC, Darmstadt (DE)

ESA UNCLASSIFIED - For Official Use

Space Debris Re-entry Phenomena

Free-molecular, transitional and continuum regimes

Hypersonic, supersonic and subsonic aerothermodynamics

ESA UNCLASSIFIED - For Official Use

Aerothermodynamics: Why & How

In order to adequately assess the risks associated with spacecraft re-entry, to be compliant with space law regulations, a **better understanding** of the **complex aerothermodynamics processes** involved is necessary.

Improving the risk assessment requires the improvement of

- Numerical simulation tools
- Physical modelling of the phenomena
- Ground facilities and measurement techniques
- Material characterisation

and the application of

- Uncertainty quantification
- Validation & Verification process

ESA's Aerothermodynamics Roadmap

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSITIED - FOI Official Use

European Space Agency

AeroThermoDynamics and Design for Demise (ATD3) CSa

Objective

Contribute to reducing the risk of casualties from (un)controlled re-entry by reducing the amount of debris surviving the re-entry process.

The ATD³ Working Group is a regular forum on European level for:

- Scientific and technology discussions
- Collecting and disseminating information
- Planning (roadmap definition and coordination)

ATD³ Working Group Support

Institut für Raumfahrtsysteme Universität Stuttgart

ESA UNCLASSIFIED - For Official Use

ATD³ Workshop

An ATD³ Workshop is co-organised by ESA & CNES every ~2 years to **share results** and compare numerical simulation tools on **benchmark test cases**.

International contributions and participation desired!

These test cases are defined with different levels of complexity and, when feasible, experimental activities are used to generate data to validate computations.

The subjects of interest are:

- Free molecular and transitional regime
- Fragmentation, ablation phenomena
- Shock-shock interaction, wake effects
- Experimental capabilities/measurement techniques
- Material and flow characterization
- ...

ATD³ Test Cases

ESA UNCLASSIFIED - For Official Use

ATD³ Test Cases

2. (Aero)thermodynamic model validation

Internal thermal evolution and ablation for imposed heat fluxes.

ESA UNCLASSIFIED - For Official Use

ATD³ Test Cases

3. Integration simulation

Simulation of complete re-entry process, computing the surviving debris mass, impact location, casualty area, etc.

ESA UNCLASSIFIED - For Official Use

CARGO Test Case – Description

ccnes esa

- Altitudes ranging from 120 km to 70 km,
 from free-molecular to continuum regime
- Angles-of-attack and angles-of-sideslip
 between -15° and 15°
- Aerodynamic coefficients and heat flux distribution

How well can we predict these flows with engineering and/or high-fidelity tools?

CARGO Test Case – Results

- Consistent **differences** between **engineering** codes and **high-fidelity** codes
- Large **scatter** of results, particularly in the transitional regime $(\sigma_{std} \approx 44\% \text{ for } C_x)$
- Effects of **shock impingement** and main body wake are usually not included in engineering codes

Force coefficient C_x at 90 km from all participants of the Space Debris Mitigation Workshop, VKI (BE) in 2016.

ESA UNCLASSIFIED - For Official Use

SHARP Test Case - Description

In order to benchmark the various tools against a less conventional vehicle, a **sharp-edged** case was proposed.

Wind tunnel tests were performed by the DLR, which allow the codes to be compared with **experimental data**.

SHARP Test Case – Results

Overall the agreement is **reasonable** for **drag** and pitching moment coefficient.

Larger **discrepancies** exist for the **lift** coefficient, which needs some more investigation.

ESA UNCLASSIFIED - For Official Use

Conclusions

The ATD³ Working Group is a regular forum on European level, co-ordinated by ESA & CNES, for scientific discussions, sharing of information and roadmap coordination.

The ATD 3 Workshop is organised every ~ 2 years to share results and compare numerical simulation tools on benchmark test cases.

International contributions and participation desired!

The overall goal of ATD³ is to contribute to reducing the risk of casualties from (un)controlled re-entry by reducing the amount of debris surviving the re-entry process.

Activities of the AeroThermoDynamics & Design for Demise (ATD³) Working Group

Dr. Jeroen Van den Eynde jeroen.van.den.eynde@esa.int

Dr. Luca Ferracina luca.ferracina@esa.int

Dr. Guillaume Prigent guillaume.prigent@cnes.fr

ESA UNCLASSIFIED - For Official Use