4th International Workshop on Space Debris Re-entry LATEST IMPROVEMENTS ON THE CNES SPACECRAFT-ORIENTED TOOL: PAMPERO

J. ANNALORO^{1*}, G. PRIGENT¹, S. GALERA², C. THIEBAUT³, P. OMALY¹

*julien.annaloro@cnes.fr

¹CNES, Toulouse, FRANCE ²ALTRAN SO, Toulouse, FRANCE ³CNES, Paris, FRANCE

CONTEXT

- For every mission launched / operated from French territory
- In case of launch and satellite reentries
- The maximum allowable probability to have at least one victim
 - $> 10^{-4}$ for uncontrolled and controlled reentries
- CNES is in charge of ensuring the right application of the law
- **CNES** develops multidisciplinary tools to predict the casualty area of debris
 - DEBRISK
 - PAMPERO

CNES ATMOSPHERIC REENTRY TOOLS

DEBRISK: certification tool

- Provided to the aerospace companies
- Based on an object-oriented approach
- New version planned for 2019

Computation time

<u>Accuracy</u>

PAMPERO: research code

- Based on a spacecraft-oriented approach
- Six degrees-of-freedom flight dynamics
- Aerodynamics and aerothermodynamics analysis
- > Heat transfers modeling through a 3D thermal conduction module
- Mechanical stress analysis from the aerodynamic and thermal loads
- Estimate of the destruction phenomena: ablation & fragmentation

- 1. NEW MESH GENERATION AND READING
- 2. FLIGHT DYNAMICS
- 3. AEROTHERMODYNAMICS
- 4. HEAT TRANSFERS MODELLING & ABLATION
 - 5. MECHANICAL STRESS ANALYSIS
 - 6. FRAGMENTATION

- **1.** New mesh generation and reading
- 2. FLIGHT DYNAMICS
- 3. AEROTHERMODYNAMICS
- 4. HEAT TRANSFERS MODELLING & ABLATION
 - 5. MECHANICAL STRESS ANALYSIS
 - 6. FRAGMENTATION

New Mesh Generation & Reading

Since 2013, tetrahedral mesh strategy chosen

- Nevertheless, this strategy is not the most relevant
- Most objects are relatively thin
- Consequently, either the mesh size is too important or mesh quality is not satisfactory

New Mesh Generation & Reading

- Since 2013, tetrahedral mesh strategy chosen
 - Nevertheless, this strategy is not the most relevant
 - Most objects are relatively thin
 - Consequently, either the mesh size is too important or mesh quality is not satisfactory
- Since 2018, extension of meshes reading by PAMPERO

New Mesh Generation & Reading

- Since 2013, tetrahedral mesh strategy chosen
 - Nevertheless, this strategy is not the most relevant
 - Most objects are relatively thin
 - Consequently, either the mesh size is too important or mesh quality is not satisfactory
- Since 2018, extension of meshes reading by PAMPERO
- Possibility to extrude a 2D mesh to a 3D mesh

- 1. NEW MESH GENERATION AND READING
- **2.** FLIGHT DYNAMICS
- 3. AEROTHERMODYNAMICS
- 4. HEAT TRANSFERS MODELLING & ABLATION
 - 5. MECHANICAL STRESS ANALYSIS
 - 6. FRAGMENTATION

FLIGHT DYNAMICS

 $\Delta t = 0,001 \, s$

Altitude: 78000m

Qconv: 0.0W/m²

RotSpeed: 30.00dea/s

Kn: 0.016486

Mach: 26.49

- Validation on aerodynamics coefficients and moments is relatively easy
 - Important number of benchmarks in the literature
- To our knowledge, not enough validation on the flight dynamics
 - Difficulty finding representative test-cases
 - First, need to make code cross-checks
- Tank test-case •
 - Our models need to be improved •
- Dumping effects issues are important •
 - Work in progress

 $\Delta t = 0.1 s$

Time: 0.00s No initial rotation Time: 0.00s Altitude: 78000m Altitude: 78000m Kn: 0.016486 Kn: 0.016486 Mach: 26.49 Mach: 26.49 Qconv: 0.0W/m² Qconv: 0.0W/m² RotSpeed: 0.00dea/s

10°/s initial rotation Time: 0.00s RotSpeed: 10.00dea/s

30°/s initial rotation

- 1. NEW MESH GENERATION AND READING
- 2. FLIGHT DYNAMICS
- **3. AEROTHERMODYNAMICS**
- 4. HEAT TRANSFERS MODELLING & ABLATION
 - 5. MECHANICAL STRESS ANALYSIS
 - 6. FRAGMENTATION

X [m]

X [m]

12 © cnes

4TH INTERNATIONAL WORKSHOP ON SPACE DEBRIS RE-ENTRY, DARMSTADT, 1ST MARCH 2018

AEROTHERMODYNAMICS

- State of the art for the Spacecraft-oriented * tools
 - Pressure: formulas \geq Newton assumption
 - Heat fluxes: blunt body experiments or CFD

Set up a collaboration with CNES, HTG, • **RTECH, ONERA**

- Comparison on different Spacecraft-oriented tools
- Comparison with high-fidelity codes
- Perform computations on test-cases, focusing \geq on complex geometries and flow regions

Identification of geometries/situations where the modified Newton law is not applicable

- Aerothermodynamics improvement in the continuum regime in progress
 - Flat faces
 - Concave surfaces
 - Trailing edges
 - Elliptic flows
 - Shock-shock interactions
 - Friction coefficients

14 O cnes

- Example 1: elliptic flows over sphere-cone like geometries
- More the subsonic region is important, more the elliptical effects are intense
- Strategy to obtain new correlations
 - Important campaign of CFD computations
 - Reduction of the problem
 - Applicable to all dimensions
 - Applicable to all configurations (α , β ...)
 - Applicable to all flow conditions

Example 2: concave sphere

Concave surface recognition algorithm in progress

Same strategy to obtain new correlations

Correlations applied according to the region (concave versus convex)

***** Usual strategy for calculating the parietal heat flux

$$Q_{conv} = Q_{conv,stag} f(r, P)$$

***** Usual strategy for calculating the parietal heat flux

$$Q_{conv} = Q_{conv,stag} f(r(\widehat{P}) \rightarrow a ready improved)$$

Usual strategy for calculating the parietal heat flux

$$Q_{conv} = Q_{conv,stag} f(r, P)$$

First way of improvement: the curvature radius

> Not calculate a mathematical curvature radius, but based on the physics involved

19) © cnes

Usual strategy for calculating the parietal heat flux

$$Q_{conv} = Q_{conv,stag} f(\mathbf{r}, P)$$

Second way of improvement: no dependence of the curvature radius (e.g. planar surface)

Important campaign of CFD computations

- 1. NEW MESH GENERATION AND READING
- 2. FLIGHT DYNAMICS
- 3. AEROTHERMODYNAMICS
- 4. HEAT TRANSFERS MODELLING & ABLATION
 - 5. MECHANICAL STRESS ANALYSIS
 - 6. FRAGMENTATION

HEAT TRANSFERS MODELLING & ABLATION

Heat transfers modelling validation

- For simple objects via comparisons with analytical results and cross-check with Openfoam
- For a complex satellite with Openfoam (in progress)
- Taking into account multi-material objects is now possible. Validation planned in 2018.

Collaboration with

HEAT TRANSFERS MODELLING & ABLATION

Ablation validation

> For simple objects via comparison with analytical results

- 1. NEW MESH GENERATION AND READING
- 2. FLIGHT DYNAMICS
- 3. AEROTHERMODYNAMICS
- 4. HEAT TRANSFERS MODELLING & ABLATION
 - **5. MECHANICAL STRESS ANALYSIS**
 - 6. FRAGMENTATION

MECHANICAL STRESS ANALYSIS

- Trade-off to take into account the mechanics •••
 - Coupling with an existing mechanical code \geq
 - Selection of Code_Aster from EDF
- Assumptions *
 - Rigid body motion (PAMPERO)
 - Quasi-static local displacements
 - Linear-elastic behavior assumption (small deformations)
 - Negligible impact of the deformation on aerodynamic and inertial forces computation
- Validity of the mechanical stress computations is ensure ••• by Code_ASTER own validation
- Verification is focused on the coupling *

Analytical verification

- 1. NEW MESH GENERATION AND READING
- 2. FLIGHT DYNAMICS
- 3. AEROTHERMODYNAMICS
- 4. HEAT TRANSFERS MODELLING & ABLATION
 - 5. MECHANICAL STRESS ANALYSIS
 - **6. F**RAGMENTATION

FRAGMENTATION

- Possibility to demise cells through thermo mechanical criteria
 - Melting temperature and fusion enthalpy
 - Maximal pressure
- We consider the fragmentation when several pieces are no longer connected
- The fragments (mesh and configuration file) are saved and calculated separately
- Validation planned in 2018

CONCLUSIONS

- **PAMPERO** is currently in an important phase of improvement and validation
- **•** Our short-team goal is to perform complete computations on whole satellites along trajectories

Thank you to all the CNES team

Thank you to all our partners

Vincent Rivola Martin Spel Christophe Vasse

Ysolde Prévereaud Jean-Luc Vérant Fernando de la Puerte Cerezo

Javier Carro Morgane Jouisse Baptiste Crusson

Special thanks to Vincent Rivola for your help and all the movies/pictures generated for this presentation

28 © cnes