

ORSAT Modelling and Assessment

Chris Ostrom* & Chris Sanchezx

*HX5 – Jacobs JETS Contract, NASA Johnson Space Center, Houston, TX 77058, USA *ERC – Jacobs JETS Contract, NASA Johnson Space Center, Houston, TX 77058, USA

NASA Orbital Debris Program Office

4th International Workshop on Space Debris Reentry, Darmstadt, 1 March 2018

Outline

ORSAT Models

- Aerodynamics
- Aerothermodynamics
- Trajectory
- Heat transfer & conduction
- Casualty Area
- Risk calculation

ORSAT Assessment Workflow

- Fragment list
- Input generation
- Input visualization
- Running ORSAT
- Reconciling independent analyses

Conclusions and Future Work

ORSAT Overview

- ORSAT has six modules (trajectory, atmosphere, aerodynamics, aerothermodynamics, thermal, debris casualty area/risk)
- Basic method of input is to obtain trajectory data at entry interface and component data (dimensions, mass, & material) before starting analysis
- Central theme is that integrated heat load or absorbed heat is computed over time during entry; when this value exceeds material heat of ablation, object is considered to demise
- If object survives, ORSAT predicts debris casualty area and risk to humans on ground
- Parent body breakup altitude is assumed (normally 78 km based on Aerospace observations) but can be varied

ORSAT Overview (Cont'd.)

- Aerothermal, ablation-only code
- Conventional material models
 - Currently no charring, cracking, or pyrolysis modules

ORSAT Overview (Cont'd.)

- Hierarchy of components is critical to input
- Components are modelled using a set of 10 shape primitives and 80+ aerospace materials
- Key output in ORSAT analysis is plot of demise altitude vs. downrange of all components
- Sample plot of sample spacecraft component demise altitudes shown in next slides
- For targeted entry, ORSAT can provide ground track of latitude vs. longitude

Preprocessing

- Automatic generation of ORSAT input file from parts list
- Color coding by 'demise score'
- Non-standard materials easily incorporated

Input Visualization

New visualization tool allows us to see what ORSAT thinks each

object looks like (in piece-by-piece view):

Running ORSAT

- Standard initial conditions are used to begin simulation
 - 0.1-deg. FPA at 122 km reentry interface
 - 78 km breakup altitude for parent objects

Objects propagated until demise or ground impact

 Fragments that show low-altitude demise, or high total thermal load typically re-run, varying initial conditions to determine most likely outcome

Independent Analyses

- Each ORSAT project is assessed by two analysts
 - End-to-end independent analysis to ensure most accurate outcome

- Results are compared, differences reconciled, and finalized
 - Modelling assumptions challenged and defended
 - Analyzed geometry examined for similarity to as-built components
 - Any differences and rationale are archived for future review and reference

Demise Altitude vs. Downrange for Example Spacecraft

Demise Altitude (km)

Future Work

ORSAT and DAS updates

- Updated NS 8719.14, Process for Limiting Orbital Debris
 - Currently under revision by NASA
- Increased automation of ORSAT process
 - Develop database of sample object reentries to estimate likelihood of survival prior to any analysis
- Probabilistic risk assessment and Parametric Studies

Future Work (Cont'd.)

- Adding new aerospace materials to database
- Continue Latitude Bias research
 - Distribution of FPA at entry interface
- New CFRP and GFRP model development
 - Supported by plasma and arcjet testing in 2018
- Characterizing high-altitude pyrolysis effects

