

Motivation

- How do large spacecraft break-up?
- Debris on ground
- Failure criteria for break-up tools
- DLR funded project
- Comparison to observation data¹

Figures from nasa.gov

¹Loehle, S. et al "Airborne Observations of Re-entry Break-up: Results and Prospects," 7th European Conference on Space Debris, Darmstadt, Germany, 2017.

Facility

TUSQ Ludwieg Tube

- Ludwieg tube impulse facility²
- Mach 7 nozzle
 - 73-84km Reynolds analogy
 - 200ms steady flow
- Two models tested

 German Academic Exchange Service (DAAD)

3

 University of Southern Queensland (USQ)

²Buttsworth, D. R., "Ludwieg tunnel facility with free piston compression heating for supersonic and hypersonic testing," *9th Australian Space Science Conference*, Sydney, 2010, pp. 153–162

Models

ATV

- ATV model with 6-DOF strain gauge
- 1:200 scale (77-84 km)
- 8 different angles of attack

Forces

ATV

- Forces can be directly measured
- Correlations to the flow
 - Pressure trace
- Drag Coefficients

5

Models

- USOS 3 body segment
- 1:400 scale (73-79 km)
- Three flight configurations

reverse

normal

Tracking

- Edge detection
- Shape fit tracking³
- Tracking while visible

³Laurence, S. J., "On tracking the motion of rigid bodies through edge detection and least-squares fitting," Experiments in Fluids; Vol. 52, No. 2, 2012, pp. 387–401. doi: 10.1007/s00348-011-1228-6.

Forces

ISS

- X-Forces principal
- 2nd order polynomial fit

$$d = a \cdot t^2 + v \cdot t + d_0$$
$$F = m \cdot a$$

CFD

- Eilmer4⁴
- Currently only one configuration
- 2D axisymmetric and 3D combined⁵
- Pressures integrated over surface area

⁴Jacobs, P., and Gollan, R., "Implementation of a Compressible-Flow Simulation Code in the D Programming Language," *Applied Mechanics and Materials*; Vol. 846, 2016, pp. 54–60. doi: 10.4028/www.scientific.net/AMM.846.54.

⁵Zander, F. et al., "Numerical Analysis of the ISS Re-entry," 7th European Conference on Space Debris, 2017.

Comparison

- Reasonable agreement between CFD and measured data
- Similar flow structure
- CFD forces on bottom elements are higher

Scaling Ideal-Real Gas

Normal Shock

Chemistry

- +10% Pressure⁶
- Shock Structure

11

⁶Huber, P. W., "Hypersonic shock-heated flow parameters for velocities to 46,000 feet per second and altitudes to 323,000 feet," NASA TR R-163, 1963.

Scaling Ideal-Real Gas

Oblique shock

- Increase of freestream area
- Change in postshock flow

Failure Criteria

- 5-100 kN of absolute lateral force
- 2-40kN shear force

- CBM 16 bolts:
 - preloaded to 50kN per bolt
 - shear strength 200kN per bolt
- Ideal aerodynamic forces lead to failure after 75km

13

Next Steps

- 3D CFD with chemistry
- Applying forces to materials in PWK⁷

14

⁷Loehle, S., et.al. "The Plasma Wind Tunnels at the Institute of Space Systems," 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, American Institute of Aeronautics and Astronautics, 2016.

Conclusion

- Models were tested in a shock tunnel
- Shear forces were calculated from models and CFD
- Scaling of forces to flight for ATV/ISS for ideal gas

- Outstanding real gas effects
 - Thermochemistry
 - Viscous effects
 - Flow field changes
- Combined thermomechanical loads

University of Stuttgart 07.03.2018

15

Thank you!

David Leiser

e-mail dleiser@irs.uni-stuttgart.de phone +49 (0) 711 685-62639 fax +49 (0) 711 685-63596

University of Stuttgart Institute of Space Systems Pfaffenwaldring 29, 70569 Stuttgart