

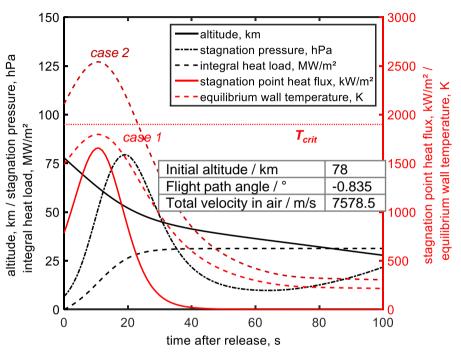
REVIEW AND ANALYSIS OF EXPERIMENTAL ACTIVITIES ON THE DEMISABILITY OF PRESSURE VESSELS

Adam S. Pagan ⁽¹⁾, Bartomeu Massuti-Ballester ⁽¹⁾, Georg Herdrich ⁽¹⁾, James A. Merrifield ⁽²⁾, James C. Beck ⁽³⁾, Volker Liedtke ⁽⁴⁾, Benoit Bonvoisin ⁽⁵⁾

(1) Institute of Space Systems, Stuttgart, Germany, (2) Fluid Gravity Engineering Ltd., Emsworth, UK, (3) Belstead Research Ltd., Ashford, UK, (4) Aerospace and Advanced Composites GmbH, Wiener Neustadt, Austria, (5) ESA-ESTEC, Noordwijk, The Netherlands

4th Space Debris Re-entry Workshop 01 March 2018, Darmstadt, Germany

- ➤ As is common knowledge by now, near-intact pressure vessels constitute the most frequently recovered type of post-re-entry space debris
 - → Tanks pose a significant on-ground casualty risk
- ➤ Two contemporary tank designs dominate: Monolithic Ti-6Al-4V (grade 5 titanium) tanks and Composite-Overwrapped Pressure Vessels (COPV)
- ➤ This presentation aims to provide an overview of relevant experimental activities on the material and component level
- We had initially over-estimated the general availability of published results so far
 - → IRS research is accordingly over-represented here



Source: Space Safety Magazine

0.4
91
6.4
280
Ti-6Al-4V
1877
1933
27
400
1500
0.7 oxidat.

- ➤ Three simple and approximate demise criteria (similar to [Fritsche2007]) are coupled with post-break-up spherical titanium tank entry analysis with IRS code REENT
- Conclusion: Low ballistic coefficients coupled with large radii render a full demise often impossible especially considering the choice of materials:
 - → Novel design approaches are essential
 - → Alternative: Forced phys. disintegration?

Simulation result	Ti tank
Peak stagnation pressure / hPa	79.5
Peak stagnation point heat flux / kW/m²	1657
Critical temperature / K	1900
Radiative case 1: High conductivity, imme	ediate th. equil.
Peak equilibrium wall temperature / K	1797
Duration of "critical heat pulse" / s	-
Radiative case 2: Localised heating only	(→ holes)
Peak equilibrium wall temperature / K	2542
Duration of "critical heat pulse" / s	23
Calorimetric criterion (no re-radiation → best case)	
Integral stagnation point heat load / MJ/m²	31.3
$Q_{conv}/H_{demised}$	0.80

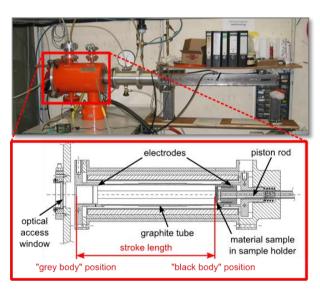
Titanium Tanks: Experimental Activities

Experimental research activities relevant for Ti-6Al-4V pressure vessel demise have so far focused exclusively on material properties.

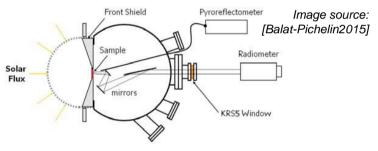
The following institutions have conducted directly relevant characterisation activities w.r.t. Ti-6AI-4V (list may be incomplete - publications are scarce):

- ➤ **PROMES-CNRS:** Emphasis on oxidation behaviour (e.g. oxide layer growth dynamics) in high-enthalpy oxidising environment (MESOX facility), pre- and post-oxidised emissivities
- ➤ AAC (ESA-TRP "CoDM"): Combined thermal and mechanical loads demise behaviour in Re-entry Chamber
- ➤ IRS (ESA-TRP "CoDM"): Transient material response / demise tests in high-enthalpy air flows (PWK1/4), pre- and post-test emissivities, preliminary characterisation of relative catalytic properties in PWK1 facility
- > **DLR Cologne** (ESA-TRP "CharDem"): Transient material response / demise tests in L3K arc heater facility
- → Due to the limited scope of this presentation, the following slides shall focus on the demise-relevant effects of surface oxidation on titanium (primarily studied at PROMES-CNRS and IRS as far as I can tell)

For any metallic bodies subjected to atmospheric entries, surface oxidation may influence their behaviour as follows:

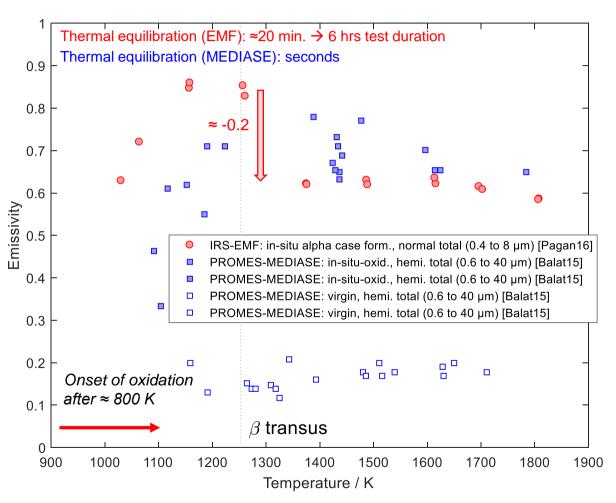

- > Emissivity: An increased emissivity would increase heat dissipation
 - → Less heat available to initiate and maintain destructive processes.
- ➤ Catalycity: Effective surface catalycities may change. Depending on this property, significantly varying degrees of additional heating may be released through recombination of dissociated air species.
- ➤ **Ablation behaviour:** Depending on the nature and (aero-)mechanical resilience of surfaces oxides, their formation could either contribute to demise by altering the primary mechanism for mass loss (from melt to "flaking") **OR** inhibit it by providing a rigid thermomechanical barrier more on that later!

Titanium Tanks: Surface Emissivity Measurements

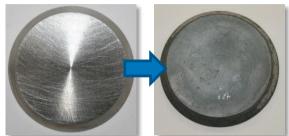

IRS Emissivity Measurement Facility (EMF)

- Measurement of temperatures and total emissivities using radiometer (0.4 to 8 μm)
- Rapid shift of sample between black body and grey body context, near-immediate comparison of measurements

PROMES-CNRS Moyen d'Essai et de Diagnostic en Ambiance Spatiale Extrême (MEDIASE)



- Measurement of total emissivities using radiometer (0.6 to 40 μm)
- Separate black body reference calibration
- Separate measurement of temperatures using two-colour pyro-reflectometer



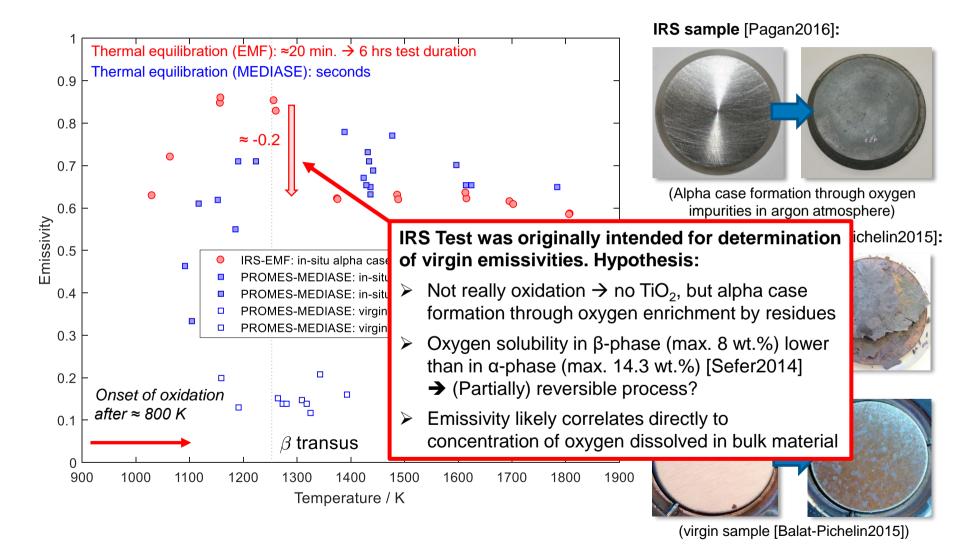
Titanium Tanks: In-situ Oxidation & Virgin Emissivities

IRS sample [Pagan2016]:

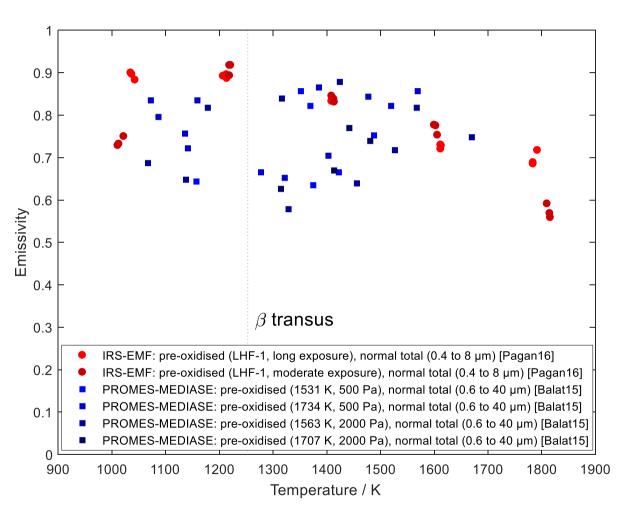
(Alpha case formation through oxygen impurities in argon atmosphere)

PROMES samples [Balat-Pichelin2015]:

Actual oxidation



(virgin sample [Balat-Pichelin2015])

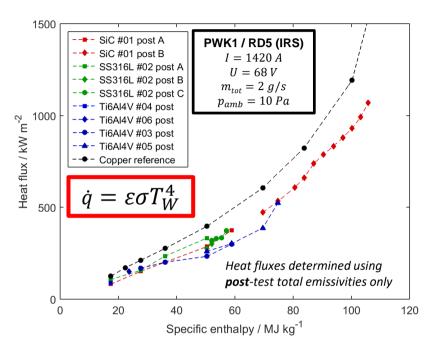

Titanium Tanks: In-situ Oxidation & Virgin Emissivities

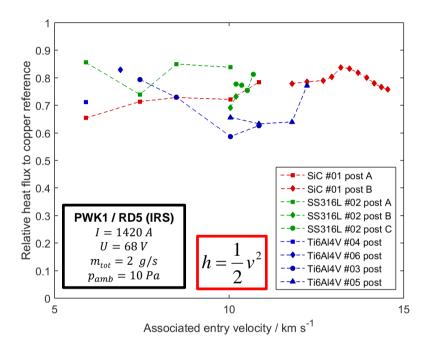
IRS samples [Pagan2016]:

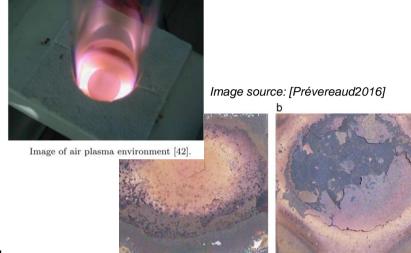
(oxidised in IRS PWK1 facility at LHF-1 test condition at varying exposure times [Pagan2016, Pagan2015])

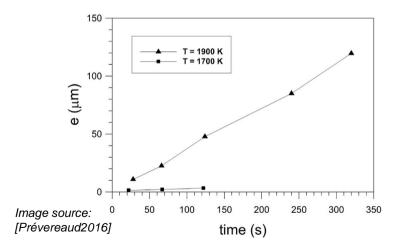
PROMES samples [Balat-Pichelin2015]:

(oxidised in PROMES-CNRS MESOX facility [Balat-Pichelin2015])




- Clear positive correlation between surface oxidation and emissivity
 - → increased heat dissipation delays demise significantly!
- ➤ Same effect observed for alpha case formation (likely subject to O₂ concentrations and timescales), directly affected by beta phase transition
- Visually very diverse range of degradation / oxidation noted
- ➤ Similar results for pre-oxidised surface emissivities between both campaigns, identical ranges between 0.55 and 0.90
- Comparatively higher scattering of PROMES-MEDIASE test data possibly reflects considerable diversity of optical properties of surface oxide features (more samples tested)
 - → Recommended total emissivities (PROMES): virgin: 0.2 / oxidised: 0.75
- ➤ Low scattering of IRS-EMF data allows grouping and fitting of data points
 - → Recommended total emissivities (IRS): T-dependent function between approx. 0.55 and 0.90 (oxidised/degraded only!)

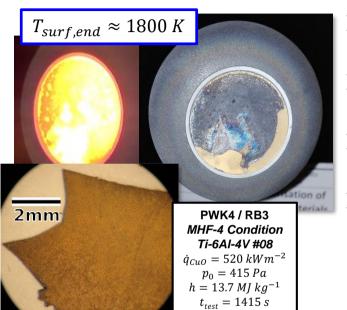

- ➤ Three materials subjected to varying heat flux conditions → Measurement of surface temperature
- Normalising the individually determined heat flux densities to the cold wall copper (CuO) reference measurements indicates the effect of material-specific catalycity (full catalycity is assumed at approximately $\dot{q}_{fc}=1.25~\dot{q}_{cuo}$).
- Very little work has been conducted on catalytic efficiencies of aerospace alloys and their oxides
 → much remains to be learned, but results so far indicate that oxidised Ti-6Al-4V generally tends to exhibit a comparatively low catalycity [Pagan2015]


Titanium Tanks: Nature of Surface Oxidation: PROMES

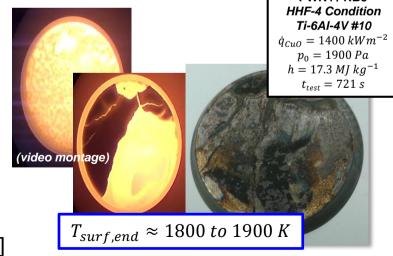
- Extensive study on Ti-6Al-4V behaviour in oxidising plasmas in the PROMES-MESOX facility [Prévereaud2016]
- Measurement of oxide thickness growth rates at varying temperatures (see below)
- No aeromechanical effects, but assumed to remove continuously replenished flaky oxide layer → oxidation accelerating demise
- Oxide behaviour changes above melting point

TA6V 11, 1600 K, 310 s.

TA6V 6, 1800 K, 325 s.


Conclusions [Prévereaud2016]:

- Oxide layer surface properties should be assumed (emissivities and slightly increased melting temperatures)
- Oxidation contributes to demise at submelting-point temperatures due to aeromechanical effects


Titanium Tanks: Nature of Surface Oxidation: IRS

- No demise achieved despite according temperature ranges (long testing times)
- Liquid, but adhering surface film (→ solidifying to flaky oxides after shutdown!), likely V₂O₅ and rutile (?)
- Much more durable, degraded surface beneath (oxides / nitrides / alpha case?)
- Highly dynamic, reproducible temperature histories indicate intriguing effects of oxidation / degradation processes and beta phase transition

Conclusions:

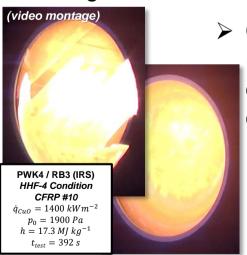
- Post-oxidation properties to be assumed
 - → Consensus with PROMES investigation
- Oxidation / degradation generally demiseprolonging despite (moderate) aeromechanical forces
 - → Differing interpretation than [Prévereaud2016]

The following institutions have or are conducting directly re-entry-relevant characterisation activities w.r.t. COPV demisability (list may be incomplete – publications are scarce):

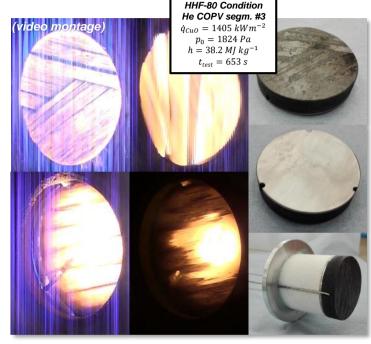
- ➤ JAXA ARD Propulsion Group: Ostensibly demisability-confirming laser- and arc heater ablation tests of JAXA-developed COPV variant with aluminium liner [Masuda2015].
- > AAC (ESA-TRP "CoDM"): Combined thermal and mechanical loads demise behaviour in Re-entry Chamber.
- ➤ IRS (ESA-TRP "CoDM"): Transient material response / demise tests in high-enthalpy air flows of different variants of CFRP as well as COPV segments (PWK4 facility) [Pagan2017].
- ➤ **DLR Cologne** (ESA-TRP "CharDem"): Transient material response / demise tests in L3K arc heater facility of CFRP and COPV segments (referred to in [Lips2017].
- VKI: Experimental activities at component-level are planned/ongoing.

COPV: State of the Art

- ➤ Typical design: Thin Ti-6Al-4V-liner (in itself problematic → Al?) covered by thick CFRP overwrap
 - → Focusing on overwrap demise behaviour is prudent
- Initially considered more "demisable" than monolithic Ti tanks by many
- > Processes (potentially) resulting in mass loss at LEO entry conditions:
 - Charring / Pyrolysis: Volume ablation, convective blockage through outgassing
 - Combustion: Primary surface ablation process below sublimation temperature
 - Erosion / Spallation: Aeromechanical removal of macroscopic particles
 - Delamination: Detachment and removal of entire filaments and layers through aeromechanical forces
- → As experiments e.g. at IRS and DLR-K demonstrate, CFRP (and acc. COPV-overwraps) behaves much like an ablator, with laminate structure and behaviour as an additional complication!



PWK4 / RB3 (IRS)


Question of overwrap's propensity to delamination in experiments and reality

- ➤ In arc heater experiments, laterally exposed samples may delaminate rapidly (or not!) depending on composition [Lips2017]
- Mechanical constriction (see below) and/or lateral shielding (see top right) of exposed edges can minimise delamination [Pagan2017]

COPV post-entry recoveries (see bottom right) indicate delamination-resistance of overlaps

→ No chance of demise unless structural integrity is compromised first!

COPV: Experimental Conclusions

- ➤ JAXA experimental investigation [Masuda2015] has indicated demisability of Al-COPV variant, however the tests were conducted on cut-out segments
- ➤ Demisability under actual entry conditions doubted in recently published analysis and review, referring to SCARAB simulations of equivalent reentering COPV and behavioural evidence from DLR-L3K tests (CFRP and COPV segments) ("CharDem") [Lips2017]
- Same conclusion reached by "CoDM"-consortium on account of observed behaviour in PWK4 tests of CFRP and COPV segments [Pagan2016]
- ➤ Different variants of CFRP show different propensities towards delamination (e.g. a JAXA-developed variant tested at IRS and UF3325 TCR variant tested at DLR-K), which could be exploited for D4D if overwrap integrity were compromised

Three distinct CFRP variants tested at IRS with varying demise behaviours and delamination propensities [Pagan2017, Pagan2017b]

cond. [Pagan2017])

Summary

General issues with tank demisability:

- ➤ Low-ballistic coefficients restrict heating rates could even prevent demise of large monolithic Al tanks (see [Lips2017])!
- > Both monolithic Ti tanks and COPV are made of very resilient materials
 - → They will simply not demise unless broken up physically
- > Possible solutions: Forced pre-fragmentation, overwrap dissection

Ti-6Al-4V tanks:

- Precise nature, dynamics and effects of surface oxidation (+ nitridation?) remain intriguing and somewhat disputed, but experimenters appear to consent on importance (ablation behaviour, optical properties, aerothermochemistry)
 - → Greater focus on metal surfaces needed in experimentation and modelling
- Alternatives: Use of "rapid melters" (e.g. Al)

COPV tanks:

- Recent activities have confirmed charring-TPS-like behaviour of CFRP overwraps
- > Delamination could play a significant role in demise, but suppressed by overwrap context
 - → Demise investigations with representative overwrap structure would help
- ➤ Alternatives: Return to more degradable compounds (glass fibres? → Favourable demisability test results for FMLs such as GLARE), overwrap dissection

THANK YOU!

Contact:

Dipl.-Ing. Adam S. Pagan: pagan@irs.uni-stuttgart.de
PD Dr.-Ing. Georg Herdrich: herdrich@irs.uni-stuttgart.de

Institute of Space Systems
University of Stuttgart
Pfaffenwaldring 29
D-70569 Stuttgart
Germany

Literature

[Balat-Pichelin2015]	M. Balat-Pichelin, P. Omaly: Study of the Atmospheric Entry of Metallic Space Debris – Oxidation and Emissivity Evaluation to Contribute to "Design for Demise", 8 th European Symposium on Aerothermodynamics for Spacecraft, Lisbon, Portugal, 2-6 March 2015.
[Fritsche2007]	B. Fritsche, T. Lips, G. Koppenwallner: Analytical and numerical re-entry analysis of simple-shape objects, Acta Astronautica 60:737-751, 2007.
[Fritsche2013]	B. Fritsche: Modelling the Thermal Decomposition of Carbon Fibre Materials During Re-Entry, Proc. 6 th European Conference on Space Debris, Darmstadt, Germany, 22-25 April 2013.
[Herdrich2017]	G. Herdrich, B. Massuti-Ballester, A. Pagan, S. Pavesi, P. Upadhyay: IRS Research and Development Activities in the Field of Atmospheric Entry, 68 th International Astronautical Congress, Adelaide, Australia, 25-29 September 2017.
[Lips2017]	T. Lips, B. Fritsche, R. Kanzler, T. Schleutker, A. Gülhan, B. Bonvoisin, T. Soares, G. Sinnema: About the Demisability of Propellant Tanks during Atmospheric Re-Entry from LEO, The Journal of Space Safety and Engineering 4, pp. 99-104, 2017.
[MassutiBallester2017]	B. Massuti-Ballester, A.S. Pagan, G. Herdrich: Temperature-controlled Material Probe for High-Enthalpy Flows, 31st International Symposium on Space Technology and Science, Matsuyama, Japan, 3-9 June 2017.
[Masuda2015]	T. Masuda, I. Masuoka, K. Kajiwara, K. Yamada: Demise Characteristics Evaluation for Melting Promotion-Type Tank, Journal of Propulsion and Power 31(3), pp. 981-985, 2015.
[Pagan2015]	A.S. Pagan, B. Massuti-Ballester, G. Herdrich, J.A. Merrifield, J.C. Beck, V. Liedtke, B. Bonvoisin: Experimental Demisability Investigations of Common Spaceflight Materials, 30 th International Symposium on Space Technology and Science, Kobe, Japan, 4-10 July 2015.
[Pagan2016]	A.S. Pagan, B. Massuti-Ballester, G. Herdrich: Total and Spectral Emissivities of Demising Aerospace Materials. Frontier of Applied Plasma Technology 9, pp. 7-12, 2016.
[Pagan2017]	A.S. Pagan, B. Massuti-Ballester, G. Herdrich, J.A. Merrifield, J.C. Beck, V. Liedtke, B. Bonvoisin: Experimental Investigation of Material Demisability in Uncontrolled Earth Re-entries, 31 st International Symposium on Space Technology and Science, Matsuyama, Japan, 3-9 June 2017.
[Pagan2017b]	A.S. Pagan, B. Massuti-Ballester, G. Herdrich: Plasma Wind Tunnel Investigation of Carbon Fibre-Reinforced Polymer Ablation and Demise. Technical Report for JAXA-ISAS, IRS-16-P01, 2017.
[Prévereaud2016]	Y. Prévereaud, JL. Vérant, M. Balat-Pichelin, JM. Moschetta: Numerical and Experimental Study of the Thermal Degradation Process during the Atmospheric Re-Entry of a TiAl ₆ V ₄ Tank, Acta Astronautica 122, pp. 258-286, 2016.
[Sefer14]	B. Sefer: Oxidation and Alpha-Case Phenomena in Titanium Alloys used in Aerospace Industry: Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. Licenciate Thesis, Luleå University of Technology, 2014.