Aerodynamic oscillations during GOCE de-orbit

T. Visser (t.visser-1@tudelft.nl), J. Beck, E. Doornbos Delft University of Technology, Belstead Research Limited 4th International Space Debris Re-entry Workshop, ESOC, Darmstadt, Germany 1 March 2018

Euler angles: Will it tumble?

Frequency [mrad/s]

ď

ŤUDelft

Geomagnetic field:

$$B_N = B_0 \left(\frac{R_E}{R}\right)^3 \cos \delta_M$$
$$B_E = 0$$
$$B_D = 2B_0 \left(\frac{R_E}{R}\right)^3 \sin \delta_M$$

Atmospheric co-rotation:

$$eta = -rac{\dot{ au}R}{V}\sin i\cos(\chi_0+nt)$$

Linearized attitude model

	$\ddot{\varphi}$	$\ddot{ heta}$	$\ddot{\psi}$
φ	n T _M T _G	T _A T _M	T _M
θ	T _A T _M	T _A T _M T _G	Τ _M
ψ	T _M	Τ _M	T _A T _M
\dot{arphi}			n
$\dot{\theta}$			
$\dot{\psi}$	n		
forcing	T _M	Τ _M	T _A T _M

Density

Density

Density

Magnetic dipole

Back to reality

ŤUDelft

8 / 10

- SPARTA (G.March)

Frequency [mrad/s]

ď

$\begin{array}{l} \mbox{Inclination} \\ 3\times 10^{-10} \rm kg/m^3 \end{array}$

Conclusions

- Significant magnetic torques during de-orbit;
- High density required for pitch stability;
- Resonance destabilizes attitude.

Recommendations

- Include $C_{I_{\alpha,\beta}}$ (roll aerodynamics);
- Analytic expressions for aerodynamic coefficients (B. Fritsche);
- Verification using simulations.

EXTRA SLIDES

Inclination

80 100 Inclination [deg] 120

140 160 180

60

1

0 0

20 40

0.5

-7

-8

Inclination

Inclination

