

International Worksop on Space Debris Re-entry

ESA/ESOC, Darmstadt/Germany 28th February – 1st March 2018

HOW CAN OPTICAL SYSTEMS SUPPORT IN RE-ENTRY EVENTS?

Noelia Sánchez-Ortiz Jaime Nomen Torres Nuria Guijarro López Roxana Larisa Andrisan Raul Domínguez González Ramón Mañas Escudero

OBSERVATIONS OF SPACE DEBRIS AND RE-ENTERING OBJECTS

Introduction

- Satellite and Space Debris Sensors
 - Radars
 - Normally used for observing objects in Earth Orbits (LEO) as their efficiency related largely with the distance between the and observed object
 - Passive Optical Sensors (telescopes)
 - They work well at large distances, but observation of objects at short altitud impacted by limitations due to relative velocity and observation geometry (illumination and weather conditions)
 - Active Optical Sensors (SLR)
 - SLR sensors required the observed obj have a retro-reflector system to allow detection, improved observation techn have lead to observe non 'collaborative objects.

Image credits: R. Jehn, ESA

OBSERVATIONS OF SPACE DEBRIS AND RE-ENTERING OBJECTS

Motivation for LEO Optical Observation -> Opportunity for many actors Motivation to improve observation **Optical Sensors evolution** methods/strategies Technology From the traditional Astronomy of cameras, mount, time tag,... distant & very slowly moving objects -> NEOS -> GEO/MEO -> LEO Optical Astrodymanic **Difficult access to Radar Data Operators** Scientific Limited research or service provision **Optical** Community development **Observation** For LEO regime SST services (Re-Large population of LEO objects of LEO entry, Fragmentation, Conjunction Increasing number of operators Objects analysis) and main activities like Future large constellations cataloguing, orbit computation,... More frequent Re-entry events SLR observations limited up to Astrodymanic recent days to collaborative objects; Users In GEO regime, now operators Industry limitations now to non-operational demand (efficient) services based on objects traditional SST observations

deimos

APPROACH TO OPTICAL OBSERVATIONS IN LEO REGIME

Main Limitations

- When comparing with Radar or SLR sensors:
 - o Earth shadow impact
 - o Meteorological and diurnal constraints
- When Comparing with **Optical observations of high altitude** objects
 - o Earth Shadow impact is larger
 - High relative angular velocity between the observed object and sensor
 - o Larger sky region
 - Much shorter observing windows (short arcs)

Main Aspects to be considered

- Impact of trailing loss and trail detection mechanism (optimal exposure times, signal to noise ratio)
 - The SNR decreases linearly with the trail length (Trailing loss)
 - Exposure times must be as short as possible (no advantage of long exposures to find fainter objects in sidereal tracking)
- Image triggering mechanism (accurate time tag of the observations)
 - Two kind of timing tag errors: Random & Systematic
 - LEO objects, with roughly 100 times faster angular speed than GEO objects

CALMA 01/05/2016, DeSS Tracker Residuals

Calibration of Optical Sensors for Observations of LEO Objects

5986.8600

Observed Object	Time Tag Accuracy tolerance	Astrometric Accuracy
MEO GEO	±20 miliseconds	1 arcseconds
LEO	±1 milisecond	2 arcseconds

CALMA 22/05/2016, Envisat-2, DeSS ANTSY Position Error in ACR

5986.8800

5966.2000

5986.8800

Time (mjd2000 utc)

5986.8700

TIME (MJD2000 UTC)

APPROACH FOR OPTICAL OBSERVATIONS IN LEO REGIME

Main Aspects to be considered (II)

- Slowest and Fastest LEO angular speed detection capabilities
 - Slowest detectable object: that one moving slow eough to produce all its signal inside one pixel (given exposure time, scale pixel resolution and FWMH)
 - Fastest detectable speed is defined as the shortest trail length to minimise trailing losses and inconvenience in detection process (accurate detection and measuring)
 - For fastest objects, SNR decreases (trailing loss) and the objecct can go out of the FoV
- Short exposure times are preferrred, two main problems:
 - o CCD read noise dominance on shortest exposure times
 - Lack of background stars (allowing to solve images and measure)
- Field of view (traded-off with the read-out time)

magnitude	stars per degree2	stars per FoV
6.0	0.117	0.178
7.0	0.347	0.527
8.0	1.00	1.52
9.0	2.82	4.29
10.0	8.13	12.36
11.0	21.88	33.26
12.0	57.54	87.46

APPROACH FOR OPTICAL OBSERVATIONS IN LEO REGIME

Main Aspects to be considered (III)

- Elevation and Angular speed
 - Larger elevation speed at observer zenith
 - Reentering object > 2000 arcsec/sec
- Tracking Schedule and Observation windows:
 - o Observation windows of LEO are few minutes short
 - Dynamic selection of target opportunities
 - Highest elevation
 - Closest to Earth Shadow
 - West or East preference
 - Last track angular distance
 - Closest to polar region
 - By predicted passes on good conditions
 - By Radar cross section catalogue

OPTICAL OBSERVATIONS IN LEO REGIME

Example of a LEO campaign

Night	Observed objects	Number of tracks	Average track length (sec)	Number of observations
11/08/2016	111	113	100.5	7350
12/08/2016	165	172	81	7311
13/08/2016	236	236	77	5463
14/08/2016	217	217	101	4188
22/08/2016	337	352	26.8	7149

Deimos Sky Survey Sensor's Control Tool for SST & NEO Observations - 09/01/2018 ITOX V40.0 - ANTSY coord: 4.40841W & 38.54347N 1120 mts (WGS-84 datum) - Date: 18-01-11 Operator: Ramon M. Escudero File Help Exit

January Observation from DeSS /Spain (15-16 January 2018)

- Possible Passes
 - o Almost every night
 - Sensor available along 4/5 nights
 - o 2 succesful passes
 - o Tiangong 1 altitude about 280 km

January Observation from DeSS /Spain (15-16 January 2018)

- Observations Comparison against TLE
 - o CALMA comparison as per calibration analysis shown before
 - o Lack of accurate orbit does not allow to evaluate observations quality
 - The analysis is driven by the poor TLE accuracy
 - o 300 arcseconds off -> 5 minutes

January Observation from DeSS /Spain (15-16 January 2018)

- Orbit Computation
 - o Observations residuals

January Observation from DeSS /Spain

- Lessons learnt and Required upgrades for improving performances.
 - In spite not being a surveillance sensor, a bigger Field of View is required
 - to track and not miss fast angular speeds objects > 1° per seconds along their very short visibility windows
 - even more when expecting some fragmentations and TLEs uncertainty.
 - The increase of FoV can be achieved:
 - by reducing a bit the focal length of the system
 - rather than increase the size of the CCD camera, which usually introduces, with more pixels, slower imaging read-out and time.
 - As fastest as possible image cycle is mandatory
 - Processing of the images must deal correlating single detections on fully different FoVs, that not share same stars background, several degrees apart
 - Bright objects and saturation problems

OPTICAL OBSERVATION OF RE-ENTERING OBJECTS

Summary

- Approaches similar to traditional MEO/GEO optical observations can benefit the operational and accurate observation in LEO regime, when accounting for:
 - o Better time Tagging
 - o Trailing losses
 - Optimum Exposure Times
- The design of a LEO sensor shall account for the observing strategy and the image processing mode
 - The principle of trailing losses guides the full sensor concept related to resolution, FoV and exposure times definition and the way on how the processing of the images for auto-detection is implemented.
- The angular speed and the apparent brightness (phase angle) of the objects are the driving parameters concerning the 'detectability' capabilities more than the limiting orbital altitude ranges and object sizes.
- Below 2 arcseconds accuracy on single measurements corresponding to uncertainties of around 10
 meters at 800 kms are possible with Antsy experimental low cost setup
- Re-entering objects can be observed, being the most demanding case, although feasible

EXPANDING FRONTIERS

Noelia Sánchez-Ortiz noelia.sanchez@deimos-space.com

