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It was observed that the probability density function (PDF) 
characterising the re-entry time of decaying objects in LEO can be 
well approximated by a skew-normal distribution when the object is 
consistently tumbling or consistently stable during the entire 
trajectory.

(Original) Aim: to investigate the use of meta-modelling techniques 
to directly map a range of initial and model uncertainties, as well as 
characteristics of the considered object, into the parameters of the 
skew-normal distribution that characterises the re-entry time 
windows, bringing to a very fast characterisation of the output PDF 
not requiring any further propagation at all

Background and Aim
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Method A (Initial idea)
• A propagation campaign should be carried out via a 3DOF propagator, 

considering:
– a predefined range of LEO initial conditions; a predefined range of physical properties of 

the objects; a predefined range of properties of the atmosphere; and a predefined set of 
affecting uncertainties.

• Then, the re-entry time window at a predefined altitude is characterised via a 
non-intrusive method for each set of initial conditions, uncertainties and physical 
properties, and a skew-normal distribution is fitted over each obtained PDF.

• These two main steps will generate a database containing pairs of inputs x(i)

(initial conditions, uncertainties, and physical properties), and outputs 
y(i)(parameters of the skew-normal).

• The database will be used to create a meta-model, fa, via a machine learning 
technique capable of providing the parameters of the skew-normal for any new 
input x within the range of the available data.

Description of the proposed methods
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Method B
• A propagation campaign can be carried out by taking into account only:

– a predefined range of LEO initial conditions;
– a predefined range of physical properties of the objects; and
– a predefined range of properties of the atmosphere.

• This will generate a database containing pairs of inputs z(i) (initial conditions, 
and physical properties), and outputs t(i) (re-entry time). 

• The database will be used to create a meta-model, ft, via a machine learning 
technique capable of providing the re-entry time for any new input z within the 
range of the available data. 

• Then, considering the same uncertainties as in Method A, the obtained meta-
model can be sampled via Monte Carlo approaches to obtain the approximation 
of the re-entry time PDF.

Description of the proposed methods
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Learning space for Method A

ID Lower bounds Upper bounds Variable

1 NominalKEa -50km NominalKEa +20km Initial a

2 NominalKEe -10-3 NominalKEe +10-3 Initial e

3 NominalKEi -10 deg NominalKEi +10 deg Initial i

4 800kg 1200kg Mass

5 1m2 5m2 Cross area

6 2 5 Nominal Cd

7 112 152 Nominal F10.7

8 3 4 Nominal Kp

9 100m 2000 m +/- interval uncertainty on position components

10 0.1 m/s 2 m/s +/- interval uncertainty on velocity components

11 10% 30% +/- interval uncertainty on Cd

12 10 40 +/- interval uncertainty on F10.7

13 2 3 +/- interval uncertainty on Kp

The search space in this Table has been sampled via a combination of  
design of experiments (DOE). 
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Learning database for Method A

• For each sample, an uncertainty propagation campaign via A-HDMR 
approach has been carried out, and a skew-normal distribution has been 
fitted to the each corresponding PDF of the re-entry time with an 
evolutionary based algorithm 

• The presented results have been obtained with three different techniques:
– Local Kriging, trained with the 300 solutions closest to the considered case; 
– FF-ANN with Bayesian regularisation, single hidden layer with 100 neurons, 

training performed on 9000 samples and ~700 samples are left for the a 
posteriori testing procedure;

– SR-GP, training performed on 9000 samples and ~700 samples are left for the a 
posteriori testing procedure, operators and functions used are: “+”, “−“, “*”, “/”, 
“sin”, “cos”;

*For all the methods, the inputs and the outputs are both normalised in [-1, 1].
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Results for Method A

4 cases are considered and presented: 
• two cases chosen randomly in the learning space, 
• a case that has very high re-entry times (x7228), and 
• a case with very low re-entry times (x967). 
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Results for Method A
Case 1



28 Feb 2018 - 4th International Workshop on Space Debris Re-entry 12

Results for Method A
Case 2
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Results for Method A
Case 3
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Results for Method A
Case 4



28 Feb 2018 - 4th International Workshop on Space Debris Re-entry 15

• Background and Aim
• Description of the Proposed Methods
• Implementation and Testing (Method B)
• Alternative Modelling of Re-Entry Uncertainties
• Conclusions



28 Feb 2018 - 4th International Workshop on Space Debris Re-entry 16

Learning space for Method B

ID Lower bounds Upper bounds Variable

1 167376.6+Re 254615.5+Re Initial a [m]

2 6.21E-05 0.003521 Initial e

3 1.509294 1.859449 Initial I [rad]

4 5.655566 5.656884 Initial Ω [rad]

5 0.001313 6.279735 Initial  [rad]

6 0.026071 6.246858 Initial th [rad]

7 1.4 6.5 Cd

8 72 192 F10.7

9 0 7 Kp

10 800 1200 Mass [km]

11 1 5 Cross section area [m2]

Each one of the ~9700 runs of the A-HDMR required and average of ~180 
trajectory propagations. Of those, a database of ~810 000 unique trajectories 
was considered.
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Learning database for Method B

• By using this database, the ANN-BR and GP-SR methods, have 
been used to learn the re-entry time.
– FF-ANN with Bayesian regularisation, single hidden layer with 100 neurons, 

training performed on 760 000 samples and ~50 000 samples are left for the 
a posteriori testing procedure;

– SR-GP, training performed on 760 000 samples and ~50 000 samples are 
left for the a posteriori testing procedure, operators and functions used are: 
“+”, “−“, “*”, “/”, “sin”, “cos”;

*For all the methods, the inputs and the outputs are both normalised in [-1, 1]. 
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Results for Method B
Case 1
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Results for Method B
Case 2
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Results for Method B

Case 3
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Results for Method B

Case 4
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During the previous phase of the work, atmospheric parameters have 
been assumed constant for each individual orbit propagation. The Wiener 
process is a good fit for forecasting errors in the F10.7 coefficient in the short 
run. In our simulator, it is used to produce a pattern that is repeated periodically 
(assuming a constant predicted value). 

These variations translate via the Jacchia Gill atmospheric model into 
oscillations of the standard density, which serves as a basis to compute the actual 
density (taking into account geomagnetic contribution, etc.)

Time-varying solar flux
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•Mass of 1000 kilograms and cross-section of 2 square meters
•Position-velocity centered on GOCE’s POD (day 2) with +/- 1000 m, 1 m/s
•Drag related quantities: Cd = 2 +/- 0.5, F10.7 = 150 +/- 30 fsu, Kp = 3 +/- 1
•P = 2 additional parameters (Gaussian-distributed) for flux variations
•Total of 9 (upper) VS 11 (lower) variables (+47% CPU for HDMR)

Comparison between PDF with constant and 
variable flux

Fun. Partial Mean Partial Var. Sens. Mean Sens. Var.
1 0.0029995 0.15491 0.0058417 0.019256

2 0.0004662 0.062121 0.00090796 0.0077222

3 0.0008838 0.066525 0.0017213 0.0082697

4 ‐0.0001776 0.018411 0.0003459 0.0022887

5 0.00051029 0.023736 0.00099382 0.0029506

6 0.0016785 0.15991 0.003269 0.019878

7 0.32281 5.3429 0.62869 0.66417

8 0.13818 1.5623 0.26911 0.19421

9 0.002923 0.16861 0.0056928 0.020959

10 0.019443 0.3399 0.037867 0.042252

11 0.0070998 0.071225 0.013827 0.008854

- Major influence comes from drag coefficient (var. 7) and mean solar flux (8)
- Flux-variation parameters (10 & 11) are less important



28 Feb 2018 - 4th International Workshop on Space Debris Re-entry 25

Comparison between PDF with narrow 
range on predicted flux

Fun. Partial Mean Partial Var. Sens. Mean Sens. Var.
1 0.0043404 0.15536 0.011642 0.024265

2 0.0011373 0.062891 0.0030504 0.0098224

3 ‐0.00030523 0.066344 0.00081868 0.010362

4 ‐0.0003641 0.018519 0.00097659 0.0028923

5 0.00031945 0.023705 0.00085681 0.0037023

6 0.0031362 0.15988 0.0084119 0.02497

7 0.32152 5.3041 0.86238 0.8284

8 ‐2.1114e‐05 0.0016668 5.6631e‐05 0.00026033

9 0.0026081 0.1694 0.0069955 0.026457

10 0.021878 0.34482 0.05868 0.053854

11 0.0068281 0.069836 0.018314 0.010907

No flux variations 
(upper) VS 2-
parameters Wiener 
process (lower)

This non-skewed normal shape may occur when the 
relative importance of the drag coefficient increases 
(for uniform distributions)

Narrower range for predicted F10.7 (+/- 1 sfu) 
increases their relative impact:
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• In this work a set of meta-modelling techniques have been considered 
and tested to build (Method A) models of the parameters of the skew-
normal for decay cases with uncertainties, and (Method B) models of the 
re-entry time that can be then used to propagate uncertainties via MC 
sampling.

• Obtained results cannot be considered exhaustive, but they show that the 
machine learning based approach has great potentialities and give 
information on the steps that should be done to improve both the 
proposed methods. 

• Future work: 
– more extensive sampling campaign to improve the current databases;
– approaches to reduce the learning errors;
– better investigation of Method B.

Conclusions
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• Moreover, a way to simulate errors in the forecast of the solar flux has 
been proposed, representing a step towards a more realistic re-entry 
simulation.

• This time-varying model introduces additional parameters that 
significantly increase the complexity of PDF computations, sensitivity 
analysis and machine learning, and, for this reason, it has not been 
incorporated so far in the generation of databases of distributions. 

• Future work:
• To include in the propagator an actual forecast of the mean flux (taking into 

account short-term and long-term oscillations), as for now the prediction is 
assumed to be constant. 

• A similar approach could also be adopted for time variations in the geomagnetic 
index, or even in the drag coefficient. 

Conclusions
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