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FROM RADAR DATA
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ABSTRACT

During the final re-entry phase of the Salyut-7 orbital
complex ESOC received weekly (in January) to daily (last
seven days) transmissions of radar data from FGAN, the
German Research Establishment for Applied Science.
The radar data comprised measurements of slant range,
range rate, azimuth and elevation. The data were proc-
essed at ESOC by an iterative least squares algorithm to
derive the state vector and additionally the ballistic coeffi-
cient of the space station.

The algorithm is explained and critical areas where a
straightforward convergence is hampered are highlighted.
Methods to solve the problem of convergence are pre-
sented together with the solutions of the orbit determi-
nation.

1. INTRODUCTION

Following the recommendations issued at the workshop
on re-entry of space debris in Darmstadt, FRG in 1985 a
coordinated Furopean effort was undertaken to predict
the re-entry of the Salyut-7 / Kosmos 1686 complex in
February 1991.

In order to make reliable predictions it is necessary to
gain accurate information about the state vector and the
ballistic coefficient of the Sovict Space Station. Already a
single radar station is sufficient to provide near real-time
orbital elements of exccllent accuracy of a non-
cooperative satellite!. In this paper the derivation of
orbital eclements by processing German radar data is
described.

2. AVAILABLE DATA

The Furopean Space Operations Centre (ESOC) reccived
radar data from FGAN, the German Research Establish-
ment for Applied Science. The radar station is located at
Wachtberg-Werthhoven, Germany. Usually each day four
passes of the Salyut-7 complex over the radar station
were recorded and transmitted to ESOC per electronic
mail. About one hour afler the last passage the radar
data were available at ESOC for processing.

The data were reccived in records of the following form:

e Epoch (day of year)
* Slant range (m)
 range rate (m/s)

e azimuth (rad)
» elevation (rad)

The radar data was already corrected for atmospheric
refraction.

During one passage the observation period is about five
minutes. FGAN selects up to about 100 records per
passage where the signal-to-noise ratios are best and
transmits them to ESOC. Thus on average there is 1
record every 3 seconds. However, their distribution is not
equidistant in time due to the preselection.

Since Wachtberg-Werthhoven is located at 50.6°N (incli-
nation of Salyut-7 is 51.6°) the observability was generally
favourable. On most days there was at least one passage
where the Space Station could even be seen in the North
of the radar station. Fig. 1 illustrates the geometry of
four typical passages as recorded on 21 January 1991. In
a polar coordinate system azimuth is counted clockwise
with zero degrees in the North. The elevation is zero
degrees at the outer circle and 90 deg at the centre.

Figure 1. Salyut-7/Kosmos 1686 passes over Wachtberg-
Werthhoven, Germany on 21 Jan 1991

The first pass starts in the South and culminates at very
low clevation. During the second pass the station travels
from Fast to West with a maximum elevation of 45°. The
maximum elevation at pass 3 is more than 60° in the
North, whereas the overall maximum elevation is reached
on the fourth pass (75°, in the South).
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This geometry of passages was similar every day with
minor changes. On February 1, the passages are slightly
shifted to the North. In Fig. 2 it can be seen that pass 2
heads directly to the zenith.

Figure 2. Salyut-7/Kosmos 1686 passes over Wachtberg-
Werthhoven, Germany on 1 Feb 1991

Heavy antenna dishes preferably have a horizontal
mounting (one axis perpendicular to the horizontal plane)
rather than an equatorial mounting (one axis perpendic-
ular to the equator plane). Therefore for passages close
to the zenith they have to switch very rapidly from West
to East and it may happen that the satellite gets lost on its
fading path. Also on February 2, 4, 5 and 6, ESOC
received only data of the first (incoming) part of the
second pass. Fig. 3 illustrates the requirements radar
dishes have to meet in order to follow the motion of a
satellite.
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Figure 3. Maximum speed in azimuth and elevation axis
as function of culmination angle E and satellite altitude h
(Courtesy FGAN).

At a satellite altitude of 250 km the antenna dish has to
rotate 5 degrees per second in azimuth when the satellite
culminates 70° over the horizon. If the maximum ele-

vation goes up to 80° the azimuth angle changes already
8 degrees per second.

One remark concerning the number of passages is impor-
tant. On February 3 only two passages were observed (it
was a Sunday). In Ref. 2, where the radar data of
Kosmos 1402 Part A is analysed, it is shown that two
passages are not sufficient to determine the ballistic coeffi-
cient of a satellite. Kosmos 1402 Part A re-entered on 23
January 1983, whereas Part C of the satellite decayed
exactly 8 years before the Salyut-7 Space Station (7 Feb-
ruary 1983). To derive reliable aerodynamic information
at least three passes with noticable atmospheric drag are
required.

3. DATA PROCESSING

The problem to be solved is to find a state vector at a
reference epoch Ty and a ballistic coefficient that provides
the ‘best fit" to the radar observations if you propagate
the state vector to the epochs where observations are
available. Best fit means the following loss function is
minimised:

J= Z(_/zbs —Z’st)r w (Z)bs _7;'5[) ()

where 1, is the vector of observations (slant range, range
rate, ...) and f. is the vector of ‘calculated observations’
as derived from the estimated state vector. This vector is
calculated by a numerical, multistep Adams-Bashforth
propagator (Ref. 3) using the Jacchia-Lineberry atmos-
pheric model.

Since range is internally stored in kilometres, range rate
in kilometres per second and the angular directions in
radians, a weighting matrix must be applicd before
adding the differences (= residuals) in observation and
calculation. The values chosen for this paper are:

1 000
010 0 0
W=l 9010
00 01

Taking the units into account it is obvious that the range
measurements are dominant for the minimisation of the
loss function. However, it was tested that changing the
weights had only little influence on the results.

In order to solve the minimisation problem a linear
relation in the change of the solve-for-vector and in the
residuals is supposed:

AAX = Af )

A contains the derivatives of the measurements with
respect to the components of the solve-for-vector. Its
number of rows is four times the number of records of
observations:



dy 0z 9BC

daz, daz, dazy daz; daz; daz; daz,
dy 9z OBC

dely Oely oOel, Oel; Oel; del, Odel,

The solve-for-vector Ax consists of changes in the state
vector in cartesian coordinates and of the change in the
ballistic coefficient (BC). Eq. 2 is a overdetermined
system of equations where residuals will be generated:

AA% —Af =%

Demanding the squares of the residuals to be a minimum
(here without weights)
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the solution is given by the least squares method of
Gauss:

ATA Ax =a"Ar 3)
Eq. 3 are called the normal equations. AT A is called the
information matrix. It is symmetric and nonnegative defi-
nite. If it is nonsingular the solution is:

AS =T AT Ar 4

This solution can iteratively be improved since the matrix
A is only a linear approximation. Lffectively, after adding
AX to the old estimate, A is newly determined at the new
estimate and a second minimisation step follows. This
procedure is repeated until the loss function has con-
verged to its minimum.

4. CONVERGENCE PROBLEMS

When Salyut-7 orbited at high altitudes the solution was
found after a few iterations. Iowever, on January 21
when Salyut-7 reached an altitude of 250 km the loss
function was no longer decreasing. The reason, is the
increasingly nonlinear relation between Ax and Af where
a linear relation A is assumed (Eq. 2). Herce the applica-
tion of Marquardt’s algorithm is helpful. The algorithm
is explained in the book by Werltz (Ref. 4). Basically, a
multiple of the identity matrix is subtracled from the
information matrix:
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AX = (AT A= AT Af (5)

If A tends to zero this has no influence and Eq. 5 is iden-
tical to the Gauss algorithm of least squares. If 1 exceeds
the diagonal values of the information matrix, Ax moves
along the negative gradicnt of the loss function, i. e. in
the dircction of steepest descent of the loss function.

The idea of Marquardt’s algorithm is to reduce A after
each iteration. This can be interpreted as a transition
from the method of stecpest descent to the least squares
algorithm.

The algorithm was applied for orbit determination on
January 21, 28 and 31. A disadvantage is the difficulty in
finding appropriate values for A. If it is too large the loss
function decreases very slowly and it takes too many iter-
ations to find the solution. But if A decreases too fast the
solution no longer converges.

An obvious possibility to reduce the number of iterations
is to provide beller initial estimates. Up to January 31 the
first estimate was derived by the first two records of radar
data. The first slant range, azimuth and clevation data
were converted to a position vector and the differences
between the first and second record were converted to a
velocity vector. The ballistic coefficient was taken from
the last orbit determination. Though this method renders
useful position vectors, the accuracy in the velocity vector
is poor.

An alternative to this approach is to propagate the sol-
ution of the last orbit determination to the epoch of new
observations. If the propagation period is of the order of
several days the along-track error becomes considerable.
Since the solve-for-vector is given in cartesian coordinates
the resulting position vector is very inaccurate.

But if the propagation period is only one day or less the
propagated solution provides a better initial estimate than
the estimate derived from two consecutive radar mcasure-
ments. Thercfore, in February when daily radar data
were received, a far better initial estimate was available.

With this initial estimate the iteration process converged
without applying Marquardt’s algorithm until the Space
Station reached an altitude of 200 km (on February 4).
The problems that appeared at this stage were due to the
numerical determination of matrix A. The derivalives in
A are formed by adding small increments dx to the
solve-for-vector. The phenomenon that could be observed
was a increase or decrease of the loss function depending
on the values of dx. This can be explained by the fact
that the propagation is increasingly sensitive to changes
or errors in the state vector. The assumptions of a linear
behaviour remain valid only in a extremely small region
(sce Tig. 4). But if dx is chosen small enough to stay
within this region rounding errors become dominant.

To overcome these problems the direction of integration
has to be reversed. Therefore, during the final phase of
re-entry the estimate refers to the epoch of the last obser-
vation and is integrated backwards in time to the earlier
observation epochs.
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Figure 4. The size of the region of lincarity depends on
the direction of integration.

S. ORBIT DETERMINATION RESULTS

In Table 1 ballistic coefficients determined at 13 different
epochs are presented together with the number of iter-
ations. The ballistic coeflicients before 28 January 1991
were calculated with a different air density model. So they
should not be compared with the later results. These
(later) results agree very well with the values given by
Nazarenko’ and by Anselmo®.

The fourth column with the number of iterations repres-
ents the problems described in chapter 4. On January 21
and 28 the application of Marquardt’s algorithm required
some experiences and attempts. However, on January 31
with the improved initial estimate the solution was found
within six iterations. Afterwards, due to the decreasing
altitude the number of iterations increased (on February

3 no aerodynamic fit was made). Since February 4 back-
ward integration was applied and the solution was always
obtained after six steps.

In Table 2 the results of the orbit determination based on
the German radar data are compared to independent
results obtained in the United States and in the Soviet
Union. All results had been converted to mean Liu-
Alford elements and propagated to a common epoch to
enable the comparison of data given in different elements
and different epochs.

The deviations in semi-major axis are only some 30
metres (compared to the Two-Line Elements) and one
hundred metres (compared to the Soviet data). Also
eccentricity, inclination and ascending node agree very
well.
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Date Altitude BC = Yacp % Number of Iterations
(km) (m?|kg)

1990/11/08 320 0.0048 12
1991/01/03 280 il 6
1991/01/07 274 0.0042 9
1991/01/14 264 0.0032 12
1991/01/21 250 0.0021 21
1991/01/28 231 0.0028 18
1991/01/31 219 0.0031 6
1991/02/01 213 0.0028 6
1991/02/02 207 0.0031 9
1991/02/03 199 EHREAN 6
1991/02/04 191 0.0031 6
1991/02/05 178 0.0032 6
1991/02/06 159 0.0034 6
kxkkkk : no fitting (only two passes observed)

Table 1. Results and statistics of orbit determination for 13 sets of data between November 1990 and decay date.

Common epoch: 1991/28/01 at 2:07:07.60

FGAN Radar Data TLE Soviet Data
A [km] 6611.024 6610.990 (-0.034) 6611.126 (+0.102)
EL-] 0.0005944 0.0005928 (-0.16[:-5) 0.0006483 (+0.54E-4)
1[°] 51.5881 51.5876 (-0.0005) 51.5814 (-0.0067)
Q[°] 219.3720 219.3683 (-0.0037) 219.3736 (+0.0016)

Table 2. Comparison of orbital elements derived from independent radar sources.
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