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ABSTRACT

Analytic aerodynamic tools, which can be implement-
In order to improve orbital decay and re-entry cal- ed in trajectory and entry codes shall therefore
culations of satellites an appropriate aerodynamic consider these points.

modelling is necessary. The aerodynamic data along
the trajectory can be provided either in numerical
tables generated by large computer codes or by any-
lytical formulae.

The last way requires a simplified description of
the vehicle shape and aerodynamic flow models for
free molecular flow , rarefied flow and hypersonic
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1. INTRODUCTION. e |
a
We may generally distinguish between orbital- and E
reentry aerodynamics. =
o
Important points for orbital aerodynamics are: meteor
» Space objects may vary considerably in size and D=15m
shape e.g. Qe=90°
Large satellites and space stations (L > 10 m )
Small debris particles (L > 10_3m)
» Shape not designed by aerodynamic considerations.
b Satellite attitude relative to velocity vector "4—”__,—————
is usually not constant . 0 L 1 1 1 ! 1 .
e.g Spin stabilized satellites 0 0,2 04 06 08 10

Tumbling satellites velocity ratio v/vg

» Due to size variation ballistic coefficient can
vary in an extremely large range.

Important points for entry aerodynamics of satelli-
tes are:
PEntry altitude h

Fig. 1 The spread of reentry altitudes for
Space objects with different ballistic
bmax coefficient B .
e.g H = 100 km for small debry particle B = m/(cD A) , @
H = 40 km for heavy satellite (NPS)
Fig. 1 explaines this.

can vary in a large range.

E Entry angle

» Entry mostly uncontrolled, therefore
angle of attack
dynamic oscillations unknown
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2. THE FLOW REGIMES

We distinguish three flow regimes ( see Fig. 2 )

Free molecular flow Kn > 5

Rarefied transitional flow 5 > Kn > 0.001
or Ma / Vv Re > .1

Kn < 0.001

Hyperonic Continuum Flow
or Ma / VvV Re < .1

It shall be remembered that the above flow regime
boundaries are shape dependent.
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Fig. 2 Reentry flow regimes

3. THE SHAPE DESCRIPTION.

Complex shapes can be described by
finite surface elements, e.g Boettcher ( Ref.1 ).
or
shape elements.
We use the shape element method in order to compose
a complex configuration ( Ref.2 ).
Fig 3. explains this method on the example of
KOSMOS 1870.
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hull conical
hull

cylindrical hull

Fig. 3
elements

The division of KOSMOS 1870 into shape

4. THE FREE MOLECULAR FLOW MODEL.

The following stepwise approach is used in order to
obtain analytical formulae.

'1. From the exact free molecular formulation, which

is only valid for convex surface elements, we dedu-
ce approximate expressions
for local surface pressure
local skin friction

2. We distingish between slender and blunt surface
element aerodynamics, which depends on the
inclination «’ of the surface element against the
flow. The following criteria is used (Ref.3 ). Sur-
face element dS local inclination o’

»

slender o« < u, withp=1/S
blunt o« > p, with p=1/S

3. We use the Pike-method (Ref.4 ) to determine the
integral aerodynamic forces ( drag, lift) for the
various shape elements.

Every shape element is characterized by typical

shape coefficients, which result from Integrals
over the wetted surface.
c, = Iscxds = Z N D . p=0-3

c = J c’ cosec 8 (n-1) ds = Z T L
4 P P

Explanations:

N and Tp :  local aerodynamic coefficients
p

D and Lp : shape integrals e.g

D = (-1)"J' (v -mPds, e.g

D, = surface area, D1 flow projected area of shape

4. As example of derived aerodynamic formula may

‘'serve a spherical cap. For drag and 1lift
coefficient we obtain the following set of
equations:

Analytical formula for drag - and lift coefficient
of a spherical cap in free molecular flow.

Boundary : « < (—g— - 9) with ® = opening angle
2 -0
— n
cp= Zat + cos a +
S
4]
vV T 1
o= — [ 051+—g—}+[—1— - e ]cos 200 +
S T 2 s1
- o
1

[2(2—0n)-20t]—§— 3[c52+1]cosa +[5052— 3]cos3a



1 e T R
[2(2—¢n)—20t]—§— —[C52+1]51na [SCS2 3)51n 3

The equations contain two shape dependend coeffi-
cients Cs1 and CS2

=2 .1 e =1--1 sins
2 2

C
3t 1 + cos® sz

Each equation consists of three terms, which have
some special physical relevance.

Term 1 gives for diffus reflection (0n= o= 1.) the

contribution of the incident flux to the aerody-
namic coefficients.

Term 2 shows the influence of the wall temperature
on drag and lift.

Term 3 vanishes for diffus molecular reflection .

5. TYPICAL RESULTS .

The following two figures show results for typical
shape elements.

Slender shape: cylindrical hull, Fig.
Blunt shape: spherical cap , Fig.

O I

We compare with these two cases the analytical so-
lutions with the exact forces determined by a sur-
face element method of DLR (Ref.1).
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Fig. 4 Drag coefficient of a cylindrical hull
( length/diameter 1/d = 3.7)
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Fig. 5 Drag and lift coefficient of a spherical cap

( diameter / nose radius d/rN = 1)

The treatment of concave shapes.

In order to treat concave shapes we adopt a control
surface method.The concave shape is surrounded by a
control surface, which must be passed by all mole-
cules hitting the body. This approximation is how-
ever exact only for the limiting speed ratio case
Sm=m. Fig.6 explains the method.

As application we selected Salyut 7, which has con-
cave elements between its solar panels.

Fig. 7 shows the drag coefficient as function of
rotation angle, and the integrated mean coefficient
over one complete rotation.

Calculations as shown in this figure have been used
to predict the Salyut 7 decay.

Control surface method applicable

for S = 00 (only x — momentum flux)
[ee]

control surface .~

free stream

control surface

complete flux passing the surface
will impinge on the body

s x — momentum passing surface
lost to body

« control surface represents
equivalent body

Fig. 6 The aproximate treatment of concave shapes.
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Fig. 7 Drag coefficient of Salyut7/Kosmos 1686

6. THE REENTRY FLOW MODELLING.

During reentry flow the space craft passes

from free molecular
l through rarefied transition
to hypersonic continuum flow.

There exist however some exeptions from this rule.
A small space debry particle may be decelerated
completely in free molecular flow. In this case

c is needed as function of speed ratio S.
DFreemol.

Fig. 8 shows the typical behaviour of the drag
coefficient y and the heat transfer Stanton number

ST as function of Knudsen number during reentry
( Ref. 5).
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Fig.8 Behaviour of aerodynamic coefficients and
approximation in the various flow regimes.

6.1 The continuum flow model.

The modified Newtonian theory is used in the Pike
formulation.

We obtain analytical drag and 1ift formulae for a
wide variety of shape elements.

For shapes having two symmetry planes through the
main axis we derived e.g the following formulae:

a = 0: CD = kN CS with

ky

CS
a # 0: ( validity wetted area constant)

Newton Factor

1]

Shape Factor

cosa (2 CS - (5 CS -3 )sinz(a))

o
Nl ~ N| ~
-4 =

sine (2 (1 -2C5)- (5¢C5 -3 )sinz(a))

The free molecular formulae shown in section 4 de-
generate to Newtonian formulae by inserting proper
values for Sm, TW/Tl’ UN 5 FT , hamely

S°° = o ; TW/Tl = 0; GN =1 ; UT =0

For a spherical cap the free molecular shape coef-
ficient CSZ equals the Newtonian shape coefficient
Cs.

Fig. 9 shows the universal Newtonian drag and lift
functions for angles of attack between a = 0 - 90°.
The shape coefficient Cs , Wwhich determines the

drag at a« = 0°, serves as parameter. The functions
are however only valid under the condition that
with increasing o the wetted surface is the same as
at @ = O0°.With increasing geometric body blunt-

ness - i.e increasing CS— the Newtonian shadowing

is however shifted to higher angles of attack.

We observe that depending on C_. the lift slope at

S
a = 0° may be positive or negative.
CS body shape lift slope at a« = 0°
< 0.5 slender positive
> 0.5 blunt negative



This demonstrates that blunt entry bodies like the
capsules will experience a negative lift for a po-
sitive defined angle of attack.

drag function
Colky

lift function
 Culkn
0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

Fig. 9 The Newtonian drag and lift function for
bodies with two symetry planes.

6.2 The bridging between free molecular
and continuum flow.

There exist several approaches to close the gap be-
tween the two flow regimes.

bridging
Free molecular ——
methods

continuum flow.

Typical approaches for bridging are :

> Local bridging with finite surface element
method, which is used in USSR (Ref. 6 and DLR
(Ref. 7 ).

> Bridging of integral coefficients as developed
by L. Potter , USA , (Ref. 8 ).

> Bridging of shape element description ( our
approach).

The last two methods allow to derive analytical fo-
rmulae for trajectory programms.

The basic bridging relations must however be de-
rived from experimental data.

As example of our approach may serve again the
spherical cap.

For this family of shape elements we derived brid-
ging relations for the normalized drag coefficient

p as shown in Fig. 10.
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Fig. 10 The bridging relations for spherical caps.

Note Reynolds number Re2 can be related to
Knudsen number Kn.

7. CONCLUSION

In free molecular aerodynamics the largest un-
certainties are connected with

> Complex, concave shape modelling.
> Unknown spacecraft attitude
> Gas- Surface Interaction law.

> Non- Diffuse reflection will be of major
importance on concave shapes with multiple wall
collisions.

For entry of small particles the free molecular
aerodynamic formulation must cover the whole range
of speed ratios between 20 > Sw > 0.

Transitional flow prediction with bridging methods
is still in a state of developement.

Complex numerical schemes ,like DSMC methods, are
too time consuming for application in trajectory
calculations.

Aerodynamic methods for trajectory calculations are
mostly used by experts with limited aerodynamic
background, therefore the method design must con-
sider this user environment.
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