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ABSTRACT

The present paper outlines the main features of a
new analytical approach to the prediction of close-
earth satellite orbits of moderate eccentricities.
Based on the method of general averaging and on the
principle of separation of perturbations, known re-
sults for the averaged time rates of change of the
mean orbital elements due to J,, J3, and Jy are su-
perimposed with new results of the averaged airdrag
perturbation equations to obtain the total rates,
which are then used to propagate the mean Kepler
state in step-sizes of 1 to 15 orbits.

The improved airdrag model incorporates in an ana-
lytically integrable representation a rotating at-
mosphere, a variable aerodynamically effective sa-
tellite cross-section, and a comprehensive, state-
of-the-art MSIS'77 (Ref.3) derived air density mo-
del as function of all major atmospheric parameters.

Keywords: Analytical Orbit Prediction, Reentry Pre-
diction, Mean Elements, Air Density Model, Airdrag
Model, Method of Variation of Orbital Elements.

1. INTRODUCTION

When dealing with the problem of close-earth satel-
lite orbit prediction, one can distinguish two prin-
ciple approaches which are the analytical and the
numerical type orbit generators respectively. Both
of these approaches have certain advantages as well
as disadvantages, which shall be briefly reviewed :

While on one hand numerical orbit prediction methods
provide highly accurate results and allow for per-
turbation models of arbitrary complexity, this ac-
curacy and model fidelity is achieved at the expense
of computer time consumption, because the state pro-
pagation in this case follows the high frequency
short periodic variation functions of the six oscu-
lating Kepler orbital elements (see Fig.3-1b). The
relatively small permissible step-size of only 1/80
to 1/50 of the orbital period, corresponding to ty-
pically 2 minute time steps, and the Tikewise high
number of perturbation function evaluations (after
each step) are consequently Teading to considerable
computing (CPU) times.

In contrast with numerical integrators, analytical
orbit prediction methods initially transform a gi-

ven osculating state to a mean state which is then
subject only to Tong-periodic and secular effects
in case of singly averaged elements (averaged with
respect to M), or subject only to secular pertur-
bation effects in case of doubly averaged elements
(averaged with respect to mean anomaly M and argu-
ment of perigee w, see Fig.3-1b). Singly averaged
elements, which will be of concern in this paper,
are then propagated in time along the smoothed,
long-periodic individual variation functions. The
permissible step-size in this case can be of the
order of 1 orbit to 1 day, depending on the instan-
taneous perturbation level. This considerable in-
crease in time step versus a numerical method is
reflected in a corresponding decrease of computing
time. Some of this gain, however, is lost for the
transformations from osculating to mean elements,
for the back-transformations, and for the formula-
tion and analytical integration of the averaged
equations of motion. Moreover, the necessity for an
integrable set of perturbation equations is in most
analytical theories accounted for by over-simpli-
fied and hence inaccurate models of the perturbation
environment (this is especially true for airdrag).
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Fig.1-1 : Relative Computing Time and Prediction
Error of a Fast Numerical Method, a
Simple Analytical, and a Projected, New

Analytical Theory for Orbit Prediction.

Proc. Workshop on Re-entry of Space Debris, Darmstadt, 24-25 Sept.1985 (ESA SP-246, Feb.1986)



40 H.H.KLINKRAD

The achievable performances of typical fast numeri-
cal and conventional analytical orbit prediction
methods are depicted as function of relative CPU
time consumption and relative prediction error in
Fig.1-1. It is the intention of this paper, to de-
ploy the theoretical baseline of a new analytical
prediction approach for close-earth satellite or-
bits (between about 120 and 1000 km of altitude),
which to a large extend incorporates the advantages
of both numerical and analytical methods, providing
results of a precision close to that of numerical
integrations within computing times close to those
of simple analytical theories.

The performance of the new method will first be ve-
rified with respect to reference results of a nume-
rical integration, and with respect to results of a
simple analytical theory for a well-defined orbit
perturbation environment. The validity of the solu-
tion approach will then also be demonstrated for a
weakly defined perturbation environment in context
with an orbit decay and reentry prognosis for the
satellite fragments COSMOS 1402A and 1402C which
reentered the atmosphere on Jan.23 and Feb.7, 1983,
respectively.

2. MODELLING OF THE RELEVANT ORBIT PERTURBATIONS

The effective perturbing acceleration acting on a
close-earth satellite orbit can be sufficiently
modelled by superimposition of the effects of the
first and second order earth oblateness potential,
and of the second order non-conservative (i.e.:
energy dissipating) airdrag force. (Def.: a pertur-
bation_is of order "j", if its relative magnitude
is 10737 of the local central attraction term g.)

2.1 Earth Oblateness Perturbation Model

The perturbing acceleration due to inhomogenities
of the geopotential can be modelled by means of an
expansion in spherical harmonic functions with
earth-specific harmonic coefficients. In order to
attain a second order accuracy for this approxima-
tion, it proves sufficient to consider the first
three zonal harmonics J2, J3, and Ja only, which
represent the rotationally symmetric deformations
(also denoted as earth oblateness potential, see
Fig.2-1). According to the previously adopted defi-
nition, J, gives rise to first order while J3 and
Jy give rise to second order gravity perturbations.
The corresponding perturbation magnitude is given
by

Pg =-gradl u/r = Jy (ag/r)"Po(sing) 1 (2.1)
Ipel ~ 1073 g (2.2)

where r - geocentric satellite distance
ae - normalising earth equatorial radius
J, - n-th zonal harmonic (see Fig.2-1)
¢ = geocentric latitude
P, - Legendre function of degree n and
argument sing
u - earth gravitational constant (central
attraction term = 3.986e+14 m3/s2)
with J, = 1082.6268e-6
Jy = - 2.5356e-6
Jg = - 1.6234e-6
Js = - 0.2276e-6

where the harmonics J, are adopted from GEM-10 (God-
dard Earth Model 10).

: First (Jy) and second order (J3 and Jg)
contributions to the perturbing earth
oblateness potential.

2.2 Airdrag Perturbation

The airdrag deceleration is acting opposite to the
relative velocity vector of a satellite passing
through the rotating earth atmosphere. The direc-
tion and magnitude of the airdrag perturbation are
described by

Pbp = - ';—CD_Q‘ p VrYr (2'3)

where cp - satellite drag coefficient

A - aerodynamically effective cross-section
m - satellite mass
Ve = T - wexrp
- relative velocity vector of magnitude
V., (magnitude of w, = 2m/day)
o - Tlocal air density

Generally, for satellite altitudes above 200km, air-
drag can be regarded as a second order perturbation,
Only shortly before final reentries, at altitudes
below 120km, it may attain the same magnitude as

the first order J, earth oblateness acceleration
(see Fig.2-2), in which case analytical orbit theo-
ries fail, and predictions should be continued by
means of numerical methods which are able to follow
the transition from orbital to sub-orbital and fi-
nally to atmospheric flight conditions.

The present paper, however, will focus on a regime
of well-defined orbit mechanics at satellite alti-
tudes well above 120 - 130km. In order to prepare

the grounds for an analytical integration of the re-
levant perturbation equations (with due regard to
airdrag), the major drag force parameters p, A, and
cp shall now be analysed in more detail.
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Fig.2-2: Relative magnitude of the airdrag decele-
ration with respect to the first order
earth oblateness perturbation for a typi-
cal satellite at altitudes below 300km.

2.2.1 Air Density

The main driver which determines air densities be-
yond 120km of altitude is the heterospheric tempe-
rature profile T(h) as shown in Fig.2-3. The shape
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of this profile can be described by an exponential
function, starting with a steep increase of T at
120km, and reaching an asymptotic 1limit, the exo-
spheric temperature T, above the thermopause. The
mathematical expression for the temperature alti-
tude profile model is

T(h) = To - (TorTi0)eexpl-s«(h-120)1 (2.4)
where Tw - exospheric temperature
Ti20 - 1initial, steady temperature at 120km
s - temperature gradient parameter in 1/km
h - geodetic altitude in km
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Fig.2-3: Temperature altitude profile of the atmo-
sphere for high and Tow solar activity
levels (high and low exospheric tempera-
tures Ty).

The 2-dimensional model (2.4) becomes a 3-dimensio-
nal, time dependent function after introducing ob-
served variations of its coefficients as function
of the following atmospheric parameters:

- local geodetic altitude

- local solar time (pronounced periods: 1d, 1/2d)

- local geodetic latitude

- season (pronounced periods: 1Y, 1/2Y)

- actual solar activity Fig.7 (10.7cm solar ra-
dio flux) _

- mean solar activity Fig 7 (average of Fig_ 7
over 3 or 6 solar revolutions = 81d or 162d ;
with pronounced period of 11Y = 1 solar cycle)

- geomagnetic activity Ay (Bartels index)

As indicated in Fig.2-3, the shape as well as the
asymptotic 1imit of the temperature profile are pre-
dominantly depending on the solar activity level.
For high and low solar fluxes respectively the exo-
spheric temperature To may range from 600K to 1900K.

Assuming the existence of a diffusive equilibrium
within the heterosphere, and assuming furthermore a
temperature profile T(h) according to (2.4), the in-
dividual particle concentrations nj of the major at-
mospheric constituents N,,0,0,,He,Ar and H under

the influence of the gravitational field and the
temperature gradient settle in exponential altitude
profiles which can be described by the following dif-
fusion equations

;ULZ
—la

h
[Eyppd THRYT 495 exp[;{

ny(h) =ny, 120

dhl (2.4)

where j = 1,2,3,4,5,6 for N,,0,0,,He,Ar,H
ny,120 = initial particle concentration at

120km altitude for constituent j

a3 - thermal diffusion coefficient (=-0.4
for He,H and 0.0 otherwise)

Mj = 18,16,32,4,40,1 for N,,0,0,,He,Ar,H

- mass number of constituent j
g - gravity acceleration g(h)
R - universal gas constant

Fig.2-4a,b show the logarithmic gradients of these
individual concentration profiles as function of
mass number and exospheric temperature level for
geodetic and geopotential altitudes up to 2000km.
These Tlogarithmic gradients which are directly pro-
portional to Mj and inversely proportional to T(h)
are denoted as concentration scale heights.

h)

d M
-(m[ ]n(nj)] = '—R]%Em‘

(2.6)
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Fig.2-4a,b: Concentration altitude profiles of the
six major constituents of the hetero-
sphere for low (Fig.2-4a, top) and
high exospheric temperature (Fig.2-4b,
bottom) respectively.

The sought air density distribution finally results
from superimposition of the individual concentra-
tion profiles, weighted by their respective mass
numbers, and divided by Avogadro's number.

o(h) = 5 nye M, (2.7)

Ag 33
As was true for the temperature profile (2.4), also
the concentration profiles (2.5) are described by
coefficients which exhibit a 3-dimensional, time
dependent variation characteristic, and which con-
sequently lead to a likewise 3-dimensional, time
dependent air density distribution function (2.7).
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The complicated interaction of the individual num-
ber densities results in a very complex air density
variation which as function of short-periodic (di-
urnal), long-periodic (seasonal), and very long-pe-
riodic (solar cycle) effects is illustrated in Fig.
2-5a through 2-5d for a constant altitude of 400km
within a Tocal solar time and latitude grid. Evi-
dently, in spite of similar locations of the diur-
nal maxima close to 15h local solar time, each of
the density distribution functions shows very spe-
cific characteristics in terms of shape, mean value,
and variation amplitude. - Consequently, in order to
avoid significant modelling errors, the projected
analytical orbit prediction theory shall take into
account a state-of-the-art dynamic air density mo-
del (e.g.: MSIS77, Ref.3) as function of all of the
above mentioned atmospheric parameters.
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F10.7 F10.7 18
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Max. =H, Min. =L 0°
o(kg/m3) = 1.38e-12
o /p =3.66

max ~min
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Fig.2-5a,b,c,d: Short-periodic (diurnal), Tong-
periodic (seasonal), and very long-perio-
dic (solar cycle) air density variations
for a constant altitude of 400km as func-
tion of local solar time and latitude
(according to MSIS77, Ref.3).

2.2.2 Aerodynamically Effective Satellite
Cross-Section

Most satellites are attitude stabilised in one way
or another. If the stabilisation is done with res-
pect to an inertial frame (e.g. star telescopes) or
with respect to a quasi-inertial frame (e.g. solar
array pointing), then the aerodynamically effective
cross-section of a spacecraft travelling through
the earth atmosphere experiences variations which
are predominantly periodic with the mean orbital
motion. The aerodynamical cross-section of the fu-
ture European Retrievable Carrier EURECA, for in-
stance, can be idealised by a non-varying (i.e.:
spherical) central body cross-section of about 4m?,
with attached, truely sun-pointing solar arrays of
approximately 80m? (1982 figures). Neglecting aero-
dynamical shielding, the cross-section variation
function would be (see Fig.2-6a)

Ay = Ay + Ayl coso | (2.8)
where Ao - constant cross-section of central body
Ap - total projected surface of solar arrays
® - dncidence angle of airflow on arrays
I Normal Vector on

Solar ~_ Orbital Plane
Meridian - W \

sbe
/I\

Fig.2-6a: Effective aerodynamic cross-section of a
spherical satellite with truely sun-
pointing solar arrays as function of
short (- U) and long periodic (= V)
effects.

The periodic part of Ax according to (2.8) can be
recognised as the result of a short-periodic vari-
ation, with a period of 1/2 revolution, of which
the amplitude varies long-periodically with the an-
nual solar motion and the precession of the orbital
plane. This periodicity is illustrated in Fig.2-6a
and 2-6b, and can be expressed as

(2.9)

Ay = Ao + Ap sinV | sin(U-Ug) |

2.2.3 Satellite Drag Coefficient

The satellite drag coefficient cp in (2.3) can be
regarded as a calibration factor, reflecting pro-
perties of the satellite surface and geometry, the
ambient atmosphere, the velocity of the impinging
particles, and the relative velocity of the space-
craft. During the lifetime of a close-earth satel-
lite, cp successively is (1) a function of the
Knudsen number Kn in the regime of free and dis-
turbed molecular flow, (2) a function of the Mach
number Ma in the phase of hypersonic to subsonic
speeds, and (3) in few cases a function of the
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Fig.2-6b: Short-periodic cross-section variation
with Tong-periodically changing ampli-
tude for a spherical satellite with
truely sun-pointing solar arrays.

Reynolds number Re shortly before impact.

When focussing on orbit decay predictions at alti-
tudes well above 120km, for most satellites (except
for large space structures) the conditions of free
molecular flow are met, and analysis of correspon-
ding orbits indicates that cp can be sufficiently
modelled by a constant value of 2.2 . This figure
shall also be adopted in the forthcoming analysis.

Especially in context with lifetime predictions for
satellites of unknown geometry and mass a Tumped ex-
pression for the drag coefficient cp and the area-
per-mass ratio A/m proves to be useful, which is de-
noted as the ballistic parameter B of the space-
craft.

B = cp-A/m (2.10)

3. ANALYTICAL ORBIT PREDICTION APPROACH
3.1 The Method of Variation of Orbital Elements

One of the elementary results of kinematics implies
that the instantaneous state of motion of a point
mass within an inertial frame at a certain time t
can be uniquely defined by a state vector x(t), con-
sisting of the six components in total of the in-
stantaneous position and velocity vector, or alter-
natively, in case of orbital motion, by a correspon-
ding set of six Kepler elements (a,e,i,2,w and M).

osculating
points

— x(t)

N \\5(Q+dﬁ
< x(t)
\5 (to"d”

Fig.3-1a: Approximation of a true, perturbed orbit
arc x(t) by infinitesimal segments of in-
dividual, unperturbed Kepler orbits with
time varying orbital elements.

When considering a Kepler motion, with the earth
idealised as a point mass, the satellite is moving
on a plane ellipse of non-varying shape and cons-
tant orientation within an inertial frame. In the
presence of a small perturbation force, however,
the satellite orbit is no Tonger a pure, plane el-
lipse, but the envelope of an infinite sequence of
individual unperturbed Kepler arcs, which in them-
selves describe the state of motion in the close

vicinity of a tangent, osculating point by a dis-
tinct set of osculating elements g(to). The infini-
tesimal transition from one of these osculating
arcs at time t, to the next following at time t+dt
can be described by a simple point-slope formula.
Xi(to+dt) =

X (to) + x4 (ty) dt (3.1)

where X = (X1:X55 «e0 5Xg)
= (a,e,1,0,uw,M)
1525 ses 56

The required time rates of change x; of the orbital
elements can be determined by means of the Lagrange
planetary equations in their GauBian formulation as
function of the instantaneous osculating elements
Xj(to) and the perturbing acceleration p(t,), which
for close-earth satellite orbits results from a su-
perimposition of the geopotential and airdrag per-
turbations pg and pp respectively.

i

x;(tg) = fety( x, pgs Pp ) (3.2)
This concept of time variant individual Kepler arcs
for the extrapolation of the osculating state is
known as the Method of Variation of Orbital Ele-

ments.

3.2 Numerical Versus Analytical Orbit Prediction
Methods

When monitoring the variation of some orbital ele-
ment with respect to time, one can identify three
basic perturbation contributions from the aspect of
periodicity. They are denoted as secular (time pro-
portional), Tong-periodic (with periods of typical-
1y months), and short-periodic (with periods of the
order of hours). The osculating elements x;(t),
which at any instant reflect the true state of mo-
tion, result from a superimposition of all of these
individual perturbation frequencies (see Fig.3-1b).

X (t)
x;(t)

Fig.3-1b: Time development of osculating elements
xi(t) and singly averaged, mean elements
Xxi(t) under the influence of secular,
long-periodic, and short-periodic per-
turbation effects.

Numerical orbit prediction methods share the common
principle to directly propagate the osculating
state xi(t) by an extrapolation of the kind

xi(totat) = xi(to) + xi(to) At (3.3)
where the perturbation equations x;(t) are symboli-
cally given by (3.2).

As a numerical integration according to (3.3) will
have to follow the short-periodic ripples of the
variation function xi(t) in Fig.3-1b, the employed
step-size At for the propagation should not exceed
about 1/50 of the orbital period in order to keep
extrapolation errors to a minimum. Thus

Atpum < 1/50 T ~ 2min (3.4)
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Broadly speeking, the simplicity of the state pre-
diction approach (3.3) is conserved at the expense
of computing effort, because for each propagation
step an evaluation of the complex perturbation
equations (3.2) has to be carried out.

In contrast with numerical methods, analytical or-
bit prediction theories strive for an increase in
propagation step-size at the cost of a computation
intensive preprocessing of the perturbation equa-
tions (3.2). In principle, analytical orbit theories
proceed in four successive steps:

(1) Transformation from osculating to mean orbi-
tal elements by removal of short-periodic va-
riations (- singly averaged elements) and
possibly long-periodic variations (- doubly
averaged elements).

(2) Determination of the time rates of change of
the mean orbital elements as function of the
instantaneous mean state and the perturbation
environment.

(3) Propagation of the mean orbit state along the
smooth, averaged variation functions with in-
creased step-size (see Fig.3-1b).

(4) Retrieval of the true, osculating orbit state
by a back-transformation.

3.3 Outline of a New Analytical Close-Earth
Orbit Prediction Approach

The following analytical orbit prediction method is
based on singly averaged Kepler elements, averaged
over 2r of the mean anomaly M (see (3.10)). The set
of six formulae for the impTicit transformation
from osculating elements x; to mean elements Xj,
and the explicit back-transformation respectively
can be expressed by the symbolic notations

(3.5)
(3.6)

xi(to) = xi(to) - Axy(

x; (to) = X; (tg) + axi(

The first order (J2) transformation functions shall
be adopted from Liu (Ref.4).

Once the mean orbit state is established, it can be
propagated in time by a point-slope formula corres-
ponding to (3.3) in the domain of mean elements.

Xi(totat) = X;i(ty) + x;(to) At (3.7)
Due to the considerably smoother time variation of
X;(t) as compared with x;(t) (see Fig.3-1b), the
propagation step-size may now be increased to as
much as

At ~T to 15T &

ana

1.5h to 1d (3.8)
where T is the orbital period. This big increase in
step-size is the major advantage of analytic theo-
ries. It is achieved at the cost of additional ef-
fort in the determination of the averaged time rates
of change of the mean Kepler elements which are de-
fined as

2 ‘| 2m -

Xi(to) = o7 % (x(to)s pg>pp ) M (3.9)
In order to solve this integral, it shall be assumed
that the airdrag and geopotential perturbation ef-
fects can be averaged individually (- separation of
perturbations), and then be added to provide the ef-
fective time rates of change of the mean orbital
elements. Assuming that airdrag is a second order
perturbation, the error introduced by this approach

is of third order only and may be neglected. One
obtains

Xi(to) = Xi,6(te) + Xi,plty) (3.10)
where X; ¢ = ?%-gg X; ol x(ty) s5pg ) dM  (3.10a)

& 2m ., -
kips gﬁ X; ol x(t)) spp ) dM  (3.10b)

In this equat10n xl ¢ for each of the elements X1
to Xg is given up to second order geopotential per-
turbation level.(J,,J3,J3 and Jg) by Liu (Ref.4).
The expression x; p according to (3.10b), however,
remains to be solved for a comprehensive airdrag
model as outlined in 2.2 . The following description
of this solution summarises in a symbolic notation
the results of a more rigorous analysis performed
in Ref.1 and Ref.2.

One intends to average X;,p in (3 10b) with respect
to the mean anomaly M, however, in order to arrive
at well-known integrals (- Bessel functions, see
(3.16/17)) the integration variable shall be the
eccentric anomaly E. Hence, in a first step,

xi p dM/dE (rather than X; p) is expanded in a Pois-
son series of sine and cosine terms of the eccen-
tric anomaly up to terms of order e® of the orbit
eccentricity, including a simple airdrag model con-
sisting of a uniformly rotating atmosphere, a sphe-
rically symmetric air density distribution with 1i-
nearly varying scaleheight, a constant aerodynamic
satellite cross-section, and a constant drag coef-
ficient of 2.2 . One gets

Xi p dM/dE =
L ciy cos(rE) +siy sin(rE) + 0( et)

exp( ae/Hg cosE ) - (3.11)

where ae is the linear eccentricity of the orbit,
Hy is the density scale height, and cj, and sj, are
reflecting the aforementioned assumptions.

In a second step, a correction factor Ky to (3.11)
is derived which takes into account short and Tong-
periodic aerodynamic cross-section variations. A
good representation of the variation function shown
in Fig.2-6b can already be obtained by the follow-
ing Fourier expansion in E, where the coefficients
represent information on satellite geometry and
attitude, orbit plane orientation, and sun position.

Ky (E) = (3.12)
In a third step, a correction factor Ko to (3.11)
is determined which reflects diurnal air density
variations along the orbit as function of the or-
bital elements, solar activity, and season. Using
successive expansions in spherical harmonics, in-
clination functions, and eccentricity functions,
the integration variable E can eventually be isola-
ted, and the following explicit formulation is ob-
tained.

1 + co+cacos(2E) +spsin(2E)

K(E) =1+ X235 Chmpg €0S(qE) + Sppng Sin(qE)
nmpgq "9 P (3.13)
Finally, in a fourth step, the seperately developed
modules (3.11),(3.12) and (3.13) are concatenated
using the trigonometric multiplication theorems.
The dependence on the fast variable E can hereby be
isolated and reduced to expressions of the sort

(3.14)
(3.15)

To(E) = cos[(r+q)E]- exp(ae/H, cosE )
T_(E) = sin[(rxq)E]+ exp( ae/Hp cosE )

According to the definition of Bessel functions,



ORBIT DECAY AND REENTRY PREDICTION 45

and due to the fact that Tg(E) is an odd function,
one finds

1 2m

o J Te(E) dE = Inug(ae/Hy) (3.16)
1 2m

o J Ts(E)dE = 0 (3.17)

with Tc(E) and Ts(E) according to (3.14) and (3.15).
Hence, upon integration of the concatenated modules
of the airdrag model over 2m of the eccentric ano-
maly E ( =averaging of the drag equations of motion
with respect to M, see (3.11)), one arrives at the
final notation

0 T FEB&E LS g Sir g™ Treg)
* cnmpq Cir ( Ir-q * Ir+q )]
where (3.18)
S/Chmpg = Sine and cosine terms in E of the
diurnal air density model (3.13)
S/Cis sine and cosine terms in E of the

series product (3.11)e(3.12)
Irig - modified Bessel functions of order
r:q and of argument ae/H,

n - degree of the diurnal air density
spherical expansion model

m - order of the diurnal air density
spherical expansion model

p - expansion order of inclination func-
tions

q - expansion order of eccentricity func-
tions

r - expansion order of the Poisson series

in E of the simplified airdrag per-
turbation equations (3.11)

Finally, the effeccive time rate of change of the
mean orbital elements according to (3.10) is deter-
mined by superimposition of the airdrag perturba-
tion results due to (3.18) with compatible geopo-
tential perturbation results obtained by Liu (Ref.4)
taking into account Jy,J%,J3 and J4 contributions.

This completes the derivation of the inputs which
are necessary to propagate the mean orbit state by
means of (3.7) and (3.10).

4. ASSESSMENT OF RESULTS

The outlined analytical close-earth orbit predic-
tion theory has been implemented in a computer pro-
gram denoted as APODES (Analytical Prediction of
Orbit Decay for Earth Satellites). A critical as-
sessment of this implemented theory shall in the
following be performed under two different applica-
tion aspects:

(1) For a well-defined orbit perturbation envi-
ronment, assuming perfect knowledge of the
gravitational and airdrag forces, an orbit
decay analysis will be performed for EURECA
(the European Retrievable Carrier). Results
of the new theory will be compared with those
of a numerical integration, and of an analy-
tical approach with a simplified airdrag mo-
del.

(2) In a quasi-operational environment, for an
orbit decay and reentry prognosis of COSMOS
1402-A and 1402-C, results of the new theory
will be compared with aposteriori observed
orbit data published in NASA Prediction Bul-
letins.

Appart from the prediction accuracy of the new the-
ory, also the aspect of computing time will be ad-
dressed.

4.1 Orbit Prediction Accuracy in a Well-
Defined Perturbation Environment

In order to demonstrate the capabilities of the out-
Tined analytical orbit prediction method, a typical
orbit of the future EURECA experimental platform
will be analysed, using the following assumptions:
orbit altitude of 400km, near-circular orbit of e=
0.001, inclination of 28.5° (launch from Cape Cana-
veral), idealised spherical satellite body of 4m?
cross-section, truely sun-pointing solar arrays of
projected area 80m2 (1982 figures), a total mass of
2200kg, and a high solar activity level of Fiy ;=
Fig.7 =200 (see Ref.2 for more details). Further-
more, in contrast with the intended mission opera-
tion, it shall be assumed that the solar arrays re-
main completely deployed throughout the flight. For
these model assumptions Fig.4-1 shows the resulting
variation of the drag deceleration magnitude over
one orbit as function of local solar time for three
different approaches:

(A) Numerical integration with exact representa-
tion of (2.3)

(B) New analytical theory (APODES) with (2.3)
modelled as described by (3.11) - (3.13)

(C) Simple analytical theory using a mean satel-
1ite cross-section (averaged over one orbit),
and no diurnal air density representation

From Fig.4-1 it can be seen that the new analytical

model (B) provides a good approximation of the true

drag force variation (A), while a simplified analy-

tical approach (C) overestimates the mean drag force
level.
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-6.0e-4
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-4.0e-4

-2.0e-4 |

0.0

0 6 12 18 24
Local Solar Time (hrs)

Fig.4-1: Short-periodic variation of the airdrag
deceleration magnitude for EURECA as
function of Tocal solar time.

(A) numerical simulation (reference)
(B) new analytical model function
(C) simple analytical model

The accuracy by which the mean Tevel of the drag
force is modelled, is directly reflected by the ac-
curacy for the prediction of the semimajor axis of
the orbit which represents the orbit energy content
and hence serves as a sensitive gauge for the ener-
gy dissipating drag deceleration. Fig.4-2 demons-
trates that the predictions of the semimajor axis
(and hence of the lifetime) of the orbit by numeri-
cal integration (A) and by the new theory (B) are
in excellent agreement, while a simplified analyti-
cal algorithm (C) arrives at a reentry which is
short by 7d with respect to the true, numerically
computed lifetime of about 27d.
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EURECA, time history of the mean semimajor axis a(t) (Fig.4-2), mean orbit

eccentricity e(t) (Fig.4-3), mean argument of perigee w(t) (Fig.4-4), and
mean orbital inclination i(t) (Fig.4-5) for predictions dueto ...

(A) a numerical integration method, (B) the new analytical theory, and
(C) a simplified analytical theory assuming no short-periodic drag force
variation (see Fig.4-1 for the relevant drag force model assumptions)

A good indicator for the accuracy by which out-of-
plane airdrag perturbations due to the rotating
earth atmosphere are modelled is the time history
of the orbit inclination predictions. Fig.4-5 shows
that also in this case the numerical (A) and the
new analytical results (B) are in very good agree-
ment, in contrast with results from a simple analy-
tical theory (C).

Finally, the accuracy by which the short-periodic
drag force variation is modelled (Fig.4-1), and by
which the highly sensitive interaction between air-
drag and geopotential perturbations is taken into
account, is well monitored by the predictions of
the mean eccentricity (Fig.4-3) and mean argument
of perigee (Fig.4-4). The good agreement between
the respective numerical predictions (A) and new
analytical results (B) according to Fig.4-3 and 4-4
also verifies the separation-of-perturbations ap-
proach used in (3.10) for the determination of the
effective mean time rates of change of the orbital
elements. Especially noteworthy is the coherence of
the predictions (A) and (B) in the vicinity of a
reverse of the eccentricity development from a steep
decrease to a steep increase of almost equivalent
sTope around day 13 of the simulation in Fig.4-3.
The corresponding rapid shift of the mean perigee
due to the impact of the small eccentricity on the
airdrag and geopotential perturbation equations
(especially due to odd zonal harmonics) can be no-

ted in Fig.4-4. Within 2 days the mean perigee w
drifts away from its initial position close to the
diurnal density bulge, and its motion stabilises to
the normal Jz secular rate only after a 180° arc is
covered, and the positions of perigee and apogee
are exchanged with respect to the diurnal density
distribution.

4.2 Orbit Prediction Accuracy in a Weakly
Defined Perturbation Environment

The preceeding analysis demonstrated that the new
analytical orbit prediction tool performs very ac-
curately, if a perfect knowledge of the relevant
orbit perturbation environment, especially as re-
gards airdrag, can be assumed. In an operational
environment, however, when analysing the decay of a
close-earth satellite of unknown geometry and mass,
and when attempting to predict its reentry into a
future of unknown or uncertain solar and geomagne-
tic activity, the emphasis as far as modelling ef-
fort is concerned now lies on the derivation and
extrapolation of the unknown airdrag parameters
from available observation data. The most widely
used data sources in this. context are:

(1) NASA Prediction Bulletin Data, providing the
satellite number and identification, and a
set of mean Brouwer orbital elements
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(2) Solar activity measurements and forecasts in
terms of actual and mean 10.7cm solar fluxes,
plus geomagnetic activity measurements and
forecasts in terms Bartels Ap indeces

A feasable approach for the prediction of solar and
geomagnetic activities into future (in lack of bet-
ter models), is the use of a constant value of Ap =
4 (=most likely value), a solar flux model such as
E 0.7 = F10_7(to) =const or FlO.7 =F10_7(to) +dF/dt

zt-to) for short or medium term predictions (over
lTess than one month), or a solar flux model such as
Fi0.7=F10.7(ts) + AF sin(ve(t-t,)) for long-term
predictions, with pronounced solar cycle effects on
Fio.7(t).

In order to determine the satellite related airdrag
parameters of an object of unknown geometry, mass,
and attitude, one has to deduce the necessary in-
formation from a previously observed time history
of the semimajor axis of the orbit. This can be ac-
complished by performing a least-squares fit to a
set of data pairs ax(tx) to obtain a low degree po-
Tynomial approximation a(t).

a(t) = aglty) +ag(t-ty) +an(t-ty)? +a3(t-to)?
(4.1)

The corresponding decay rate at time t is
a(t) = ap+2ap (t-tg) +3a3 (t-t,)2 (4.2)

As 3 is known to be only affected by airdrag, and
as this rate is furthermore directly proportional
to the ballistic parameter B=cpA/m (which contains
all satellite related drag data), one can in a sin-
gle step calibrate the airdrag perturbation equa-
tions via & as to obtain the observed decay rate
according to (4.2). - Another way to determine B is
an iterative propagation of the orbit over an arc
of known solar and geomagnetic activity between two
sets of NASA 2-Tine elements, until B has been im-
proved so far as to meet the observed value of the
semimajor axis of the second data set with suffi-
cient accuracy. This second approach is Tess liable
to inaccuracies in the transmitted 2-Tine element
sets, if the iteration is performed over a suffi-
ciently Tong arc of 1 or 2 days. In lack of better
information, the thus acquired value of B should be
taken as constant until the next update.

The outlined orbit decay prediction method was for
the first time employed within a quasi-operational
environment at the occasion of the uncontrolled re-
entry of objects A and C of the Russian ocean sur-
veillance satellite COSMOS 1402, after a failed se-
paration and injection into a higher 1000km orbit
of the nuclear reactor module of the spacecraft on
Dec.28, 1982. The major fragments A and C of COSMOS
1402 (part B decayed within 2 days) were thereafter
continuously tracked by NORAD, and the determined
mean Brouwer orbital elements were regularly sub-
mitted in NASA 2-1ine format to several computation
centres via NASA Prediction Bulletins. The diverg-
ing orbits of parts A and C, with 1402-A decaying
at a much higher rate than 1402-C, suggested soon
after reception of the first sets of elements that
the heavy nuclear reactor was contained in part C.
This assumption was in fact later confirmed by the
Taunch authorities.

Starting from Jan.10 and Jan.14 respectively, Fig.
4-6 and 4-7 show results of a reentry prognosis for
COSMOS 1402-A and 1402-C in terms of prediction er-
ror with respect to the actual reentry epochs as
function of the date at which the prediction was
performed. The results for COSMOS 1402-A illustra-
ted in Fig.4-6 demonstrate that the prediction un-

certainty almost Tinearly decreases while approach-
ing the true reentry date, and that the uncertainty
margins are of the order of 10% of the remaining
lifetime of the spacecraft. This figure of 10%, re-
flecting both the uncertainties in the satellites
area-per-mass ratio (which was in the range of 320
to 370kg/m2 for COSMOS 1402-A), and in the predic-
ted solar and geomagnetic activities, appears to be
a widely accepted error estimate for medium and
short-term reentry predictions.
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Fig.4-6: COSMOS 1402-A reentry prediction error
as function of the prediction date.
(reported reentry at tg=Jan.23,22:21UT)
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Fig.4-7: COSMOS 1402-C reentry prediction error
as function of the prediction date.
(reported reentry at tr=Feb.7,11:10UT)

Fig.4-7 shows a much larger fluctuation of the pre-
diction error for the COSMOS 1402-C reentry as com-
pared with COSMOS 1402-A. The corresponding range
of estimated area-per-mass ratios extends from 600
up to 800kg/m?. By inspection of Fig.4-7 one finds
that the predicted reentry date until Feb.5 seems
to settle at an epoch which is about 1 day beyond
the actual splash-down. This phenpmenon finds its
explanation in an outburst of geomagnetic activity
on the afternoon of Feb.5 (Ap went up to 46), which
reduced the expected Tifetime by 1 day from 3 to 2
days.

In order to complete the picture, Fig.4-8 and 4-9
respectively show the aposteriori numerically com-
puted splash-down Tocations for COSMOS 1402-A and
1402-C, using ballistic parameter estimates from
previous analytical predictions, and using the last
available NASA 2-Tine element information (which
was only received after the actual reentries).
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Fig.4-8 and 4-9: Reported splash-down versus numerically computed splash-down Tocations for
COSMOS 1402-A (Fig.4-8, left) and COSMOS 1402-C (Fig.4-9, right) on the
basis of the last three sets of published NASA 2-Tine elements.

4.3 Computing Time Requirements of the New
Analytical Theory

The computing (CPU) time which is necessary to per-
form the prediction as depicted in Fig.4-2 to 4-5
by means of the new analytical orbit generator as
implemented in the APODES program is of the order
of 0.36s of CPU-time per orbit (=tyes ) on a CII/
HB Series 66 computer for an initial step size of
one revolution. Over a single orbit prediction in-
terval this compares with about t,.s/4.85 for a
simple analytical theory, and with about t _;-8.82
for a fast numerical multi-step propagator.

Using a steE—size control dependent on the actual
decay rate a, the CPU-time consumption of the new
analytical technique can further be reduced to va-
Tues of t, . /5.0 up to t,.¢/15.0, depending on the
present orbit altitude and drag force Tlevel. For
the decay prediction of EURECA (Fig.4-2), a step-
size increase corresponding to an average CPU-time
reduction down to t,e¢/7.0 per orbit, results in an
error for the predicted Tifetime of only 2.7% .

As was initially claimed in Fig.1-1, the present
analytical orbit theory is thus capable of predic-
ting a close-earth satellite orbit of Tow to mode-
rate eccentricity with an accuracy close to a nume-
rical integration, and within a computing time
close to that of a simple analytical method.

5. CONCLUSIONS

The present paper deployed the basic features of a
new analytical orbit prediction method for close-
earth satellite orbits under the influence of geo-
potential (J2,J3,Jd4) and airdrag perturbations. Ma-
jor concern was given to the accurate and yet inte-
grable representation of the airdrag perturbation
equations, taking into account a rotating earth at-
mosphere, a variable aerodynamic satellite cross-
section, and an air density model as function of
the atmospheric parameters altitude, latitude, lo-
cal solar time, season, geomagnetic activity, as
well as actual and mean 10.7-cm solar flux activity
indices.

The new theory is especially suited for orbits of
low to moderate eccentricities with altitudes bet-
ween 120 and 1000km. The major applications are in
the field of altitude decay predictions for mission
analysis purposes, and in the field of splash-down
forecasts for uncontrolled satellite reentries.
When operated with a controlled step-size, the pre-
sent method is capable of meeting the accuracy ob-
tained by a fast numerical integrator within the
computing time which is necessary for a conventio-
nal, simplified analytical orbit generator.
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