

Future Debris Mitigation Concepts

Stijn Lemmens, Francesca Letizia

2019-03-20 ESA ECSL Workshop - Standards

ESA UNCLASSIFIED - For Official Use

Introduction

- Guidelines and standards are only useful when they are used
- United Nations, *Guidelines for the long-term sustainability of outer space activities (A/AC.105/2016/CRP.17)*, 2016. Guideline 26:
 - Provide a transparent overview of global space activities,
 - Quantify the effect of internationally endorsed mitigation measures aimed at sustainability of the environment,
 - Estimate the impact of these activities on the space environment.

Introduction

- Space debris standards are in a phase of maturation:
 - Explicit numerical processes where possible (e.g. orbital lifetime)
 - Objectives where necessary (e.g. pressure release from tanks)
 - Implementation:

ESA UNCLASSIFIED - For Official Use

Stijn Lemmens, ESA's Space Debris Office | 25/01/2018 | Slide 3

Introduction

- Space debris standards are in a phase of maturation:
 - Explicit numerical processes where possible (e.g. orbital lifetime)
 - Objectives where necessary (e.g. pressure release from tanks)
 - Time to implementation can be significant
- Standards are still based on guidelines/national objectives from the 90'ies
 - 25 year rule in LEO is based on launch traffic assumption,
 - GEO graveyarding practices do not work for inclined satellites,
 - Collision avoidance is qualitative addressed,
 - Observability questions for surveillance lead to security questions,

ESA UNCLASSIFIED - For Official Use

• ...

Stijn Lemmens, ESA's Space Debris Office | 25/01/2018 | Slide 4

New Space Revolution

ESA UNCLASSIFIED - For Official Use

Space Debris Office | 20/11/2018 | Slide 5

Problem statement

- Complementary to legal issues associated to space debris:
 - Space debris mitigation is about space sustainability
 - Can a technical concept capture the long term sustainability guidelines?
 - The environment is dynamic, so needs to be the standard.
 - Is a standard for each object alone enough?
 - Not all technical solutions to mitigate are equally desirable
 - Can we differentiate?

ESA UNCLASSIFIED - For Official Use

· = ■ ► = = + ■ = = = = ■ ■ = = = = ■ ■ ■ ■ = = = ₩ · · ·

Space is a shared resource

But how to share the cake?

- "Similar" frameworks in place on Earth:
 - Environmental burden and protection
 - Economic value of a resource
- Space Debris mitigation needs to focus:
 - Liability: Debris causes collisions; Re-entries cause impacts; ...
 - Environment: Space needs to be useable and available

ESA UNCLASSIFIED - For Official Use

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = = M ■ ■ ■ = = = ₩ →

All objects, one set of rules

ESA UNCLASSIFIED - For Official Use

One object, one slot

- An upper stage is treated equally independent on how much mass it launches
- A CubeSat based drag sail de-orbit from 1000km in 25 years is as compliant as ERS-2 from 600km.
- 100's of re-entries of the same constellation in few given years with a casualty risk of 0.99 * 10⁻⁴ each is compliant.

ESA UNCLASSIFIED - For Official Use

One slot, how many objects?

Satellites in **GEO** share and manage **longitude slots** based on **frequency allocation** to avoided harmful interference (short term)

ESA UNCLASSIFIED - For Official Use

Space Debris Office | 20/11/2018 | Slide 12

One slot, how many objects?

Satellites, launch vehicles, and constellations **around Earth** could share and manage **orbits** based on **environment capacity allocation** to avoided harmful interference (short & long term)

ESA UNCLASSIFIED - For Official Use

Development of a risk figure, i.e. environment index, to define a capacity:

- **Risk** equals probability times severity
- **Probability**: the likelihood of a catastrophic collision in the year analysed; With active/operational payloads performing collision avoidance; ...
- **Severity**: the resulting in cumulated collision risk on the rest of the LEO population including inactive objects; ...

Satellites, launch vehicles, and constellations **around Earth** could share and manage **orbits** based on **environment capacity allocation** to avoided harmful interference (short & long term)

ESA UNCLASSIFIED - For Official Use

One slot, how many objects?

Satellites, launch vehicles, and constellations **around Earth** could share and manage **orbits** based on **environment capacity allocation** to avoided harmful interference (short & long term)

ESA UNCLASSIFIED - For Official Use

Slots OK, but how to allocate them?

Environment capacity is the typology & orbital regimes of artificial space objects compatible with a stable evolution of the environment

ESA UNCLASSIFIED - For Official Use

Slots OK, but how to allocate them?

- Single satellite versus fleet
- Sustainable use of launches
- Optimal use of different orbits
- Enables long term allocation

+

Environment capacity is the typology & orbital regimes of artificial space objects compatible with a stable evolution of the environment

ESA UNCLASSIFIED - For Official Use

Slots OK, but what does it bring?

ESA UNCLASSIFIED - For Official Use

Mitigation guidelines:

"Limit the yearly consumption of environmental capacity"

Standards:

"The environmental impact shall be less than X based on method Y"

Engineering practice:

"Find the optimal solution which is mission dependent"

Legally:

A handle for flexible target setting

Space Debris Office | 20/11/2018 | Slide 18

= II 🛌 :: 🖛 + II 💻 🔚 = II II = = = :: 🖬 🛶 🔯 II = :: II 🕅 💥 🕯

Slots OK, but how to keep track?

⊘ (𝔅) (𝔅) > × (𝔅) × (𝔅) Share Browster' WebLs ≠	- ♂ × - ℃[sende_ _ ∞ ☆ ☺ _ ∞ ☆ ☺
Environment Capacity Registration	
Existing missions Submit new	European Space Agency 👻
Registration Launch providi Submission agreement L	ar ann an
Mission Bring-to-use Total capacity Timeline	Edit
Earthcare 2021 0.01	ß
Flex 2022 0.05 _ 2 ×	
ID Object Mass Area Operational Disposal orbit strategy	
1 Biomass () bio_oper.in () bio_eol.in	
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	New mission Other missions
2013 2020 2021 2022 2023 2023 2024 2023 2024 2023 2020 2021 2020 2021 2022 2033 2034 2023 2030 2031 2030	2 2033 2040

European Space Agency

1+1

Slots OK, but how to keep track?

- ITU-like process to request capacity allocation (instead of frequencies)
- E.g. First-come first-served
- The consumption of capacity is measured for all the mission duration (operational life + disposal)
- Book-keeping of capacity-allocation for the future years
- The status needs to be re-computed routinely to track changes in the environment

ESA UNCLASSIFIED - For Official Use

Environment Capacity

- Seeing space as a limited environment allows for:
 - a "natural" inclusion of environmental law concepts, including damage & harm. I.e. going in orbit is already a damage done.
 - The notion of space sustainability
- Norms of behaviour are laid out in standards and can further mature
- Under the assumption of space as a "limited" "environment", a **dynamic strengthening of the norms** becomes possible.
 - Shortening the 25 year disposal rule and higher than 90% post mission disposal success rates (IADC, On Large Constellations of Satellites in LEO, 2017)
 - One can consider missions, instead of objects.

ESA UNCLASSIFIED - For Official Use

Stijn Lemmens, ESA's Space Debris Office | 25/01/2018 | Slide 21

= II 🛌 ## II = 🚝 = II II = = # 🖬 II = # ## II 🗮 🚟

Environment Capacity

- The mission/object index behind environment capacity is a **label**:
 - ADR can have negative impact (i.e. creating more capacity for the rest)
 - One can address common but differentiated responsibility
 - It creates an **incentives** for "low impact" missions, enabling technological differentiations.
- Currently secondary space debris mitigation aspects can still influence it:
 - Tractability enhancers or orbital data sharing.
- Non-adherence will still allow of positive identification of others.
 - Enabling gradual adoption

ESA UNCLASSIFIED - For Official Use

Stijn Lemmens, ESA's Space Debris Office | 25/01/2018 | Slide 22

Environment capacity is the typology & orbital regimes of artificial space objects compatible with a stable evolution of the environment.

The use thereof by any mission {should be minimised / shall be of level A/B/C}

ESA UNCLASSIFIED - For Official Use

Stijn Lemmens, ESA's Space Debris Office | 25/01/2018 | Slide 23

□ II ≥ II = + II = ≥ □ II II = □ H = 0 II = II = 0 W