

Final Presentation ESA-MASTER: Hands-on

Enhancement of S/C Fragmentation and Environment Evolution Models

March 21st, 2019

Presenter: André Horstmann and Sebastian Hesselbach

Things covered during this demo presentation

- Basics: General overview
- Basics: Spatial Density in LEO
- Basics: Lagrange flux calculation
- Basics: Flux evaluation (d > 1mm) on a SSO
- Basics: Comparison of collision probability for different size thresholds

- Advanced: Impact velocity/azimuth on defined oriented surface (2D + 3D)
- Advanced: Spatial density declination vs. altitude (3D)

ESA MASTER is available as download from:

https://sdup.esoc.esa.int/

Supported platforms are:

- Windows
- Linux (32bit / 64 bit)
- macOS/OSX

To make the MASTER installer leaner, it contains only the reference population (November 11, 2016 for MASTER-8). To add additional population files, download them here and unzip them into <MASTER installation directory>/data/.

ESA MASTER is available as download from:

https://sdup.esoc.esa.int/

Also available:

- Software User Manual
- License Agreement

 \rightarrow Launching ESA MASTER ...

- New MASTER Logo
- Clean user interface
- Left: User input
 - Basic Settings
 - > 2D-Spectrum definitions
- Middle: Presentation of results
- Right: Output selection
- Three Scenarios

- Handing of multiple projects
- Clean workspace environment
- Output includes raw data output

🔶 🚞 default	3 Elemente
>- 🚞 input	5 Elemente
>- 🚞 output	14 Elemente
🗆 寻 master.cfg	2,0 KiB
🔆 🚞 Study-1	5 Elemente
>- 🚞 input	5 Elemente
>- 🚞 output	14 Elemente
— 🔛 logfile	3,2 KiB
— 🔛 master.cfg	2,0 KiB
🗆 📄 progress.dat	9 B
- Study-2	5 Elemente
>- 🚞 input	5 Elemente
>- 🚞 output	10 Elemente
— 🔛 logfile	3,2 KiB
— 🗦 master.cfg	2,0 KiB
🗌 📄 progress.dat	9 B

- Handing of multiple projects •
- Clean workspace environment •
- Output includes raw data output •
- Two different modes: •
 - Basic Mode
 - Expert Mode

	Space debris T	errestrial E	invironment	Reference	Model - defa	ult <2>	
	, ⊘			2			
	ot Reset	Help	PlotHelp	About	Settings		
			×				
<u>v</u> *		Project S	ettings			~ ^ (>	3
Misc. Settings	Processor Se	ttings	GnuPlot Se	ettings			
Export EPS gra	aphs in greysca	ale mode					
Show warning	g messages as	popups					
✓ Expert Mode							
	A	pply	Cancel				

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on page 8

Task	Obtain a 2D Spatial Density plot for LEO (200 km $-$ 2000 km) and objects larger then 1cm in diameter at November 1 st , 2016
Steps	 Set object size intervall in 'Basic Settings' Set desired output spectrum in '2D Spectrum Definitions' Click 'Run'
Result	A 2D-plot showing Spatial Density vs. Altitude in LEO at November 1 st , 2016 (with and without uncertainty bars).

1) Set object size intervall in 'Basic Settings'

2) Set desired output spectrum in '2D Spectrum Definitions'

3) Click 'Run'

Result:

Technische

Universität Braunschweig

Spatial density in LEO (200 km to 2000 km) for objects with diamter d > 1cm at November 2016 (with uncertainty bars).

ESA-MASTER v8.0.0

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on page 14

Institute of **Space Systems**

Spatial Density [1/km³]

Result:

if you do not want to show the uncertainty bars \rightarrow Right-click on the plot area

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on

Institute of Space Systems

Result:

Spatial density in LEO (200 km to 2000 km) for objects with diamter d > 1cm at November 2016 (without uncertainty bars).

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on

page 16

Technische

Universität Braunschweig

Institute of Space Systems

Task	Obtain a 2D-Flux plot for a Lagrange point and objects larger then $1\mu m$ in diameter
Steps	 Selecting 'Target Orbit' as scenario Switching from 'Earth-bound' to 'Lagrange point' Set desired output spectrum in '2D Spectrum Definitions' Click 'Run'
Result	A 2D-plot showing 2D-flux vs. Diameter in a Lagrange point.

Technische

Universität Braunschweig

Target Orbit	Inertial Vo Basic Sett	- ← ● lume ings	Spatial Density	3) Logarithmic scale
2D Spectrum Definitio	2D Spectrum Do ons Log. Auto Min	efinitions . Max.	Classes >0: Width <0: Number	 Minimum diameter: 1 μm Maximum diameter: 100 Diameter steps: 100 step
 object mass object diameter time 	 ✓ ✓	100000.0 100.0 2016.0	0.4 -100 -200.0	Click 'Apply' to save

4) Click 'Run'

Result:

2D-plot showing 2D-flux vs. Diameter in a Lagrange point.

(optional)

- \rightarrow Right-click on plot area
- → Select 'Cumulative'
- \rightarrow Right-click on plot area
- → Select 'Logscale Y'

Technische

Universität Braunschw<u>eig</u>

ESA-MASTER v8.0.0

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on

page 23

Institute of Space Systems

Result:

2D-plot showing 2D-flux vs. Diameter in a Lagrange point.

(optional)

 \rightarrow Right-click on plot area

→ Select 'Cumulative'

→ Right-click on plot area

→ Select 'Logscale Y'

Done!

Fechnische

Universität Braunschweig

ESA-MASTER v8.0.0

- **Task** Obtain a 2D-Flux plot for a Sun-synchronous orbit and objects larger then 1mm in diameter in November 2016.
- Steps 1) 'Target Orbit' scenario already selected
 2) Switching from 'Lagrange point' to 'Earth-bound' in Basic Settings
 3) Define a SSO of your choice, e.g. Envisat Orbit
 - Semi-major axis: 7136 km
 - Eccentricity: 0.001
 - Inclination: 98.6°
 - RAAN: 110.0°
 - AoP: 200.0°

4) Set desired output spectrum in '2D Spectrum Definitions'5) Click 'Run'

Result A 2D-plot showing 2D-flux vs. Diameter on a SSO, here: on an Envisat orbit.

Technische

Jniversität Braunschweig

- Environment Satellite
- Launched in 2002
- 8110 kg (incl. 319 kg hydrazine)
- Average crossection: 75 m²
- Un-controlled state
- Current altitude: 765 km
- 150 years remaining lifetime (aerodynamic decay)
- Top priority target for active debris removal missions

CARO CARO

Target Orbit	Inertial Volume	Spatial Density	1) 'Target Orbit' selected
	Basic Settings*		
Analysis Interval Begin date End date	2016/11/01 00 2016/11/01 00		2) Switching back to 'Earth-bound'
Run-ID	master		
ESA-MASTER v8.0.0 Flux (d > 1mm) on Sun-synchron Selection © Earth-bound Target Orbit Settings Lower argument of true latitu Upper argument of true latitu Target orbits (Singly Averag Prop. Start epoch End 2016 11 01 00 2016 Resolution 1 Year	ous orbit (Epvisat) Lagrange point ud 0.0 ud 360.0 epoch SMA ECC S11 01 00 7136 0.001 98.0	RAAN AoP 6 110.0 200.0 + - Add mission phase	3) SMA / km: 7136 ECC / -: 0.001 INC / °: 98.6 RAAN / °: not used AoP / °: 200
Technische Universität Braunschweig Brage 28	2019 André Horstmann and S	Sebastian Hesselbach ESA-MA	ASTER: Hands-on Institute of Space Systems

5) Click 'Run'

Result:

2D-plot showing 2D-flux vs. Diameter on a SSO orbit in November 2016. In this example on an Envisat orbit.

ESA-MASTER v8.0.0

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on page 31

Institute of Space Systems

Result:

2D-plot showing 2D-flux vs. Diameter on a SSO orbit in November 2016. In this example on an Envisat orbit.

(optional)

- \rightarrow Right-click on plot area
- → Select 'Cumulative'
- \rightarrow Right-click on plot area

page 32

→ Select 'Logscale Y'

Fechnische

Universität Braunschweig

ESA-MASTER v8.0.0

Result:

2D-plot showing 2D-flux vs. Diameter on a SSO orbit in November 2016. In this example on an Envisat orbit.

(optional)

Done!

- \rightarrow Right-click on plot area
- → Select 'Cumulative'
- \rightarrow Right-click on plot area
- → Select 'Logscale Y'

ESA-MASTER v8.0.0

- **Task** Calculate the flux-based collision probability for different size thresholds on Envisat using the MASTER output of 2D-flux.
- Steps 1) Make sure to use cumulative spectrum (flux values for d > d*)2) Access the MASTER output datafile
 - 3) Isolating flux values for selected diameter thresholds d*, e.g. for 1mm, 5mm, 1cm, 5cm and 10cm.
 - 4) Lookup required satellite properties
 - 5) Making assumption that flux was constant over the mission duration(!)
 - 6) Use flux-based collision probability formula to calculate collision probability
- **Result** Collision probabilities for Envisat covering different threshold diameters

1) Cumulatve spectrum still selected

2) Select 'Data file' to access the MASTER output

Driver file	Data file										1) Cumulatvo
# # Title: #		2D flux di	stribution	vs. Object D	iameter						spectrum still
" Scale: # x Data: # y Data: # Discret #	isation:	logarithmi Object Dia Object Flu 50 classe	c meter [m] x [1/m^2/yr] s from 0.10] 2000E-02 m t	o 0.10000E	:+03 m, 0	.10000	E+00 logarit	nmic class	width	selected
# Diameter #[m]	Ехр1- [1/m/	Fragm Coll- 2/yr]_[1/m^	Fragm Launcl 2/yr]_[1/m^2	n/Mis NaK-Dr 2/yr]_[1/m^2	ops SRM-S /yr]_[1/m^2	lag SRM /yr]_[1/m	-Dust ^2/yr]	Paint Flks _[1/m^2/yr]_	Ejecta [1/m^2/yr]_	MLI [1/m^2/yr]	
0.00125	9	0	0 (0 0 0	0)	0	0	0	0	
0.00199	5	0	0 0	0 0 0 0	0	·))	o o	0	0	0	
0.00316 0.00398	2	0 0	0 0	o o o o	0)	0 0	0 0	0 0	0 0	
0.00501	2	0	0 (0 (0 0 0	0)) 1	0	0	0	0	
0.01000	<u>0</u>	0 0	0 0	0 0 0 0 0	G	, ,	 0	00	 0	 0	
0 01584	9	n	n (n n	0	1	n	n	0	Ο	
											V
								3) Iso thresh	lating li nolds	nes foi	r desired diameter

Technische Universität

Braunschweig

<pre># Title: 2D flux distribution vs. Object Diameter # # Scale: logarithmic # x Data: Object Diameter [m] # y Data: Object Flux [1/m^2/yr] # Discretisation: 50 classes from 0.10000E-02 m to 0.10000 # # Diameter Expl-Fragm Coll-Fragm Launch/Mis NaK-Drops SRM- # [m] [1/m^2/yr]_[1/m^2/y</pre>	
<pre># Scale: logarithmic # x Data: Object Diameter [m] # y Data: Object Flux [1/m^2/yr] # Discretisation: 50 classes from 0.10000E-02 m to 0.10000 # # Diameter Expl-Fragm Coll-Fragm Launch/Mis NaK-Drops SRM- Cloud 5 Man-made Meteoroids Streams Tot. # [m] [1/m^2/yr]_[1/m^2/yr]_[1/m^2/yr]_[1/m^2/yr]_[1/m^^2/yr]_[1/m^2/</pre>	
<pre># Diameter Expl-Fragm Coll-Fragm Launch/Mis NaK-Drops SRM- Cloud 5 Man-made Meteoroids Streams Tot, # [m] [1/m^2/yr]_[1/m^2/yr]_[1/m^2/yr]_[1/m^2/yr]_[1/m^ r]_[1/m^2/yr]_[</pre>	
<pre># [m] [1/m^2/yr] [1/m^2/yr] [1/m^2/yr] [1/m^2/yr] [1/m^ . r] [1/m^2/yr] [1/m^2/yr] [1/m^2/yr] [1/m^2/yr] [1/m^2/yr]</pre>	
	yr]
0.001000000000	LE-01
0.001259 0 0 0 0 0 0 0 0.7742E-02 0 0 0.77	E-02
0.001585 0 0 0 0 0 0 0.5134E-02 0 0 0.51	E-02
0.001995 0 0 0 0 0 0 0.3707E-02 0 0 0.37	/E-02
0.002512 0 0 0 0 · 0 0.2419E-02 0 0 0.24	E-02
0.003162 0 0 0 0 0 0 0.1743E-02 0 0 0.17	E-02
<u>0.003981</u> 0 0 0 0 0 0.1277E-02 0 0.12	/E-02
0.005012	E-03
)E-03
0.007943 0 0 0 0 0 0 0.4360E-03 0 0 0.43)E-03
0.01000000000)E-03
0.012589 0 0 0 0 0 0 0.2485E-03 0 0 0.24	E-03
	E-03

3) Isolating lines for desired diameter thresholds

Space Systems

$$P(d>d^*) = 1 - exp(-F(d>d^*) * A * \Delta t)$$

Diameter d*	Cum. Flux	Mean area	Mission duration	Coll. Prob.
1 mm	0.1031 * 10 ⁻¹ 1/(m ² a)			99.99 %
5 mm	0.8943 * 10 ⁻³ 1/(m ² a)			60.89 %
1 cm	0.3330 * 10 ⁻³ 1/(m ² a)	75 m ²	14 a	29.50 %
5 cm	0.4693 * 10 ⁻⁴ 1/(m ² a)			4.80 %
10 cm	0.2392 * 10 ⁻⁴ 1/(m ² a)			2.48 %

- **Task** Calculate the 2D-flux (d > 1cm) dependent on impact velocity and impact azimuth on a oriented surface in LEO, facing the leading direction (in direction of motion).
- Steps 1) Enabling 'Expert Mode'
 - 2) Switch to 'Target Orbit' Mode
 - 3) Define target orbit, e.g. ISS Orbit
 - 4) Set diameter size interval to larger then 1cm
 - 5) Define oriented surface
 - 6) Set desired output spectrum in '2D Spectrum Definitions' and '3D Spectrum Definitions'
 - 7) Click 'Run'
- **Result** Three plots showing (1) 2D-flux vs. impact velocity (2) 2D-flux vs. impact azimuth and (3) 3D-flux vs. impact velocity vs. impact azimuth

Universität

		· · · · · · · · · · · · · · · · · · ·	2) Switch to 'Target Orbit Medel
Target Orbit	Inertial Volume	Spatial Density	2) Switch to Target Orbit Mode
	Basic Settings*		
Analysis Interval			
Begin date	2016/11/01 00		
End date	2016/11/01 00		3) Define ISS Orhit [.]
Comments			
Run-ID	master		SIMA / KITI: 6780
ESA-MASTER v8.0.0			ECC / -: 0.001
Surface in leading direction on	ISS orbit		INC / °: 51.6
Selection			
Earth-bound	🔾 Lagrange point		
Target Orbit Settings			AOP / °: 200
Lower argument of true lati	tu 0.0		
Upper argument of true latit	t u 360.0		
Target orbits (Singly Avera	ged Elements)		
Prop. Start epoch End e	epoch SMA ECC INC	RAAN AoP	
2016 11 01 00 2016	11 01 00 6780.0 0.001 51.6	110.0 200.0 + -	

7) Click 'Run'

Result:

Technische

Universität

(1) 2D-Flux vs. impact azimuth (2) 2D-Flux vs. impact velocity (3) 3D-Flux vs. impact velocity vs. impact azimuth

ESA-MASTER v8.0.0

Result: 1.6e-06 (1) 2D-Flux vs. impact azimuth (2) 2D-Flux vs. impact velocity 1.4e-06 (3) 3D-Flux vs. impact velocity 2D Flux Distribution [1/m² /yr] 1.2e-06 vs. impact azimuth 1e-06 8e-07 6e-07 4e-07 2e-07 0 5 10 15 20 25 30 35 40 0 Impact Velocity [km/s] MAN Total MTBG Technische

ESA-MASTER v8.0.0

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on page 51

Universität Braunschweig

Institute of Space Systems

Result:

Technische

Universität Braunschweig

ESA-MASTER v8.0.0 3D flux distribution vs. Impact Velocity and Impact Azimuth Object Flux [1/m²/yr] 6e-07 5e-07 4e-07 3e-07 2e-07 1e-07 0 Impact Azimuth [deg] 35 Impact Velocity [km/s]

Result:

- (1) 2D-Flux vs. impact velocity
 (2) 2D-Flux vs. impact azimuth
 (3) 3D-Flux vs. impact velocity
 vs. impact azimuth
- \rightarrow Right click on plot area
- → Select 'Top View'

Fechnische

Universität Braunschweig

Result:

(1) 2D-Flux vs. impact velocity (2) 2D-Flux vs. impact azimuth (3) 3D-Flux vs. impact velocity vs. impact azimuth

- \rightarrow Right click on plot area
- → Select 'Top View'

Done!

Fechnische

Universität Braunschweig

ESA-MASTER v8.0.0

Task	Calculate the 3D-Spatial density (d > 1cm) dependent on declination and altitude in LEO.
Steps	 Switch back to 'Spatial Density' Mode Set desired output spectrum in '3D Spectrum Definitions' Click 'Run'
Result	Single plot showing 3D-Spatial Density vs. declination vs. altitude

Target Orbit	Inertial Volume	Spatial Dens	ity 🔸
	Basic Settings	a <u></u>	
Analysis Interval			
Begin date	2016/11/01 00		
End date	2016/11/01 00		
Comments			
Run-ID	master		
ESA-MASTER v8.0.0			
Spatial Density (d > 1cm): declina	ition vs. altitude		
Size Interval			
Lower threshold	0.01	🔍 🔾 kg	⊛ m
Upper threshold	100.0	🔍 🔾 kg	• m

3D Spectrum Definitions					
3D Spectrum Definitions					
Gen. X-Axis			Y-Axis		
	object mass	•	impact velocity 🗸		
	impact right ascension	•	impact declination		
	impact velocity	•	impact arg. of true lat.		
	impact velocity	-	impact eclipt. longitude 🗸	-	
	object semi major axis	-	object eccentricity		
	object semi major axis	-	object inclination		
	object inclination	-	impact arg. of true lat.		
	object diameter	-	impact arg. of true lat. 🔻		
~	s.d. declination	-	s.d. altitude 🗸 🗸	-	2) Set desired output
	s.d. declination	-	s.d. right ascension 🔹		spectrum
					•

3) Click 'Run'

March 21st 2019 | André Horstmann and Sebastian Hesselbach | ESA-MASTER: Hands-on page 62

Universität Braunschweig

Result:

Plot showing 3D-Spatial Density vs. declination vs. altitude

- \rightarrow Right click on plot area
- → Select 'Top View'

Technische

Universität Braunschweig

Done!

ESA-MASTER v8 0 0

3D spatial density distribution vs. S.D. Declination and S.D. Altitude

Thank you!

More information: Software User Manual

Additional population data: https://sdup.esoc.esa.int/

page 64

