

Part. 1 Introduction				
09:00 – 09:15	Welcome and Overview of the Day			
09:15 - 09:40	Space Debris Mitigation Principles and their Effects	Holger Krag, ESA		
09:40 - 10.10	International Guidelines	Thomas Schildknecht, AIUB		
10:10 - 10:30	Current Implementation Levels	Stijn Lemmens, ESA		
10.30 - 11.00	Coffee Break			

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 1

|+|

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = = ■ ■ ■ ■ ■ = = = ** · ·

	Part 2 Standards and Processes	
11.00 – 11.30	The GVF Best Practices Document	Dan Oltrogge, AGI
11.30 - 11.45	Space Debris Standards on ISO Level	Dan Oltrogge, AGI
11.45 – 12.00	Debris related subordinated ISO-standards	Vitali Braun, ESA
12.00 - 13.00	Lunch Break	
13.00 - 13.30	Future Debris Management Concepts	Stijn Lemmens, ESA

ESA UNCLASSIFIED - For Official Use

1+1

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = = ■ ■ ■ ■ ■ = = = ■ ■

Day #2 – Part 3

Part 3 Processes and Implementation Examples				
13.30 - 14.30	The ESA Space Debris Mitigation Process, Handbooks and Examples	Rosario Nasca, ESA		
14:30 - 15:00	French Process for Debris Mitigation Compliance Verification	Laurent Francillaut, CNES		
15:00 - 15:30	The Belgium Space Debris Mitigation Process	Jean-Francois Mayence, BELSPO		
15.30 - 16.00	Coffee Break			
16:00 - 16:30	Licensing Space Activities in the era of New Space	Toby Harris, UKSA		
16:30 - 17:00	The New Zealand Process for Space Debris Mitigation	Dave Willing, New Zealand Space Agency		
17:00 - 17:30	Space Debris Mitigation – Implementation by DLR	Jan Grosser, DLR		
17:30	Adjourn	·		

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 3

|+|

Space Debris Mitigation Principles and their Effects

Holger Krag, Head of ESA's Space Debris Office 20/03/2019

ESA UNCLASSIFIED - For Official Use

Evolution of a Fragment Cloud - Animation

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 5

+

Iridium/Cosmos Collision (Animation)

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 6

business as usual

object count

time

Spatial Density

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 9

· _ 88 🛌 ## 88 🗯 # 18 🗯 🚍 88 88 🚍 📰 📰 🖬 🖬 🖬 👘 🕪

HVI Impact Test

- HVI sample: impact of an
 Al-sphere of d = 1.2cm (m
 ≈ 1.7g)at v = 6.8km/s on
 an Al-block of diameter
 18cm and height 8.2cm
- Crater depths: 5.3cm

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 10

Impact Energy

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 11

HST Solar Array Retrieval

ESA UNCLASSIFIED - For Official Use

Impacts in Solar Arrays

MIR Impact

Mir Station – Starboard Window Service Module Jan 1996

[Source: Thomas Reiter]

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 13

□ II ▶ II ■ + II ■ ⊆ □ II II □ □ □ H ▲ Ø II □ II ₩

IADC - Protected Regions

Inter-Agency Space Debris Coordination Committee

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 14

•

______SDM_Training | Krag | 2013 | Pag_14 📰 🚺 🛯 🚍 🚍 👭 🔤 📰 🚼 🛃 🗮 🗮

Current Guidelines

- Drafted on request of UNCOPUOUS (presented in 2003)
 - Prevent Release of mission related objects:
 - Passivation
 - Disposal (90% reliability):
 - GEO: Graveyard orbit
 - LEO: Limit Orbital Lifetime to < 25 years after mission in LEO
 - Collision Avoidance
 - Limit Risk on-ground to 1:10.000 per re-entry event

ESA UNCLASSIFIED - For Official Use

Effectivity of Measures

Effectiveness of Mtigation Measures

European Space Agency

•

Battery Break-up Causes

Battery Failure Modes potentially leading to break-up:

- Over-temperature
- □ Short-circuit (internal or external)
- Over-charge
- Over-discharge
- Structural issues, damage

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 17

Battery Break-up Causes

Leading to thermal runaway

- → Increase of internal pressure
- → Break-up if reaction is too quick for protections to react in time

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 18

|+|

Electrical Passivation: Methods

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 19

*

Why Propulsion Passivation?

Current technology only allows to deplete hydrazine tanks to ~5 bar and about 1% residual propellant
Main risks

1. Propellant dissociation causing tank burst

Т (°К)	T (°C)	Thermal Runaway
373	100	20 days
423	150	19 hours
473	200	1.5 hours

> 50°C, hydrazine can begin to dissociate

Reaction is exothermic

ESA UNCLASSIFIED - For Official Use

2. Hypervelocity

explosion

impacts causing

Holger Krag | 20/03/2019 | Slide 20

Disposal from LEO

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 21

*

Disposal from LEO

- Up-down manoeuvre due to Earth-sensor constraints (can be designed for!)
- Estimated remaining lifetime below 15y

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 22

European Space Agency

Drag Augmentation Devices

- Particularly attractive for satellites without a propulsion system.
- Applicable to uncontrolled reentry of satellites in orbit altitudes below 700 km.
- Stabilization of the attitude is difficult to achieve for altitudes above 550 km.

Deployed Icarus sail (on an engineering model).

ESA UNCLASSIFIED - For Official Use

Risk on Ground

ESA UNCLASSIFIED - For Official Use

Source: Paul Maley

+

Holger Krag | 20/03/2019 | Slide 24

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 25

1+1

Image: Image

Critical elements in a spacecraft

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 26

•

Uncontrolled vs. Controlled Re-entry

ESA UNCLASSIFIED - For Official Use

Holger Krag | 20/03/2019 | Slide 27

•

_ II 🕨 ## == ++ II == 🚝 __ II II __ __ ## 🛶 💁 II __ ## 🗗 💥 📁