

Lessons learnt & outlook

Workshop on Collision Avoidance Challenge Results 23rd April 2021

Francesca Letizia ESA Space Debris Office

ESA UNCLASSIFIED - Releasable to the Public

Lessons learnt

Results compiled in T. Uriot et al., Astrodynamics, 2021

Overview of data preparation, competition setup, participant feedback

Data distribution Limitations of the competition Imitation Imitations of the competition Imitation Imitation </tr

CDM dataset still available

Support research in line with the UN Guidelines on Long-Term Sustainability of Space Activities

M.F. Palermo et al., 8th ECSD, 2021
 L. Ayala Fernández, 8th ECSD, 2021

(131 events with $p_c > 10^{-5}$): intrinsic, but it can be mitigated with a different formulation

Metric emphasises false negative (translation of operational mind-set)

Potential for ML approaches

Indication that ML approaches can do better than naïve predictions

Open points after competition:

- **Risk** vs uncertainty
- Feature relevance
- Time-series exploitation
- Generation of **synthetic** data

Academic activities (concluded)

Problem formulation

Use ML to predict the evolution of the **position uncertainty**, affected by update delivery

- Need to handle miss distance separately
- + Potential to learn from the full dataset

Master thesis with TU Darmstadt

▶ S. Metz et al., 8th ECSD, 2021

Analysis of several approaches and investigation of **feature relevance** for **explainable** results

FDL Europe 2020

▶ G. Acciarini et al., 8th ECSD, 2021

Exploitation of **time series**: LSTM trained to predict next CDM or event until TCA

Pipeline for the generation of a synthetic dataset

Academic activities (on-going)

ESA_LAB@Oxford

▶ S. Gogioso, AQC, 2020

Applicability of **Quantum Machine** Learning tested during the Kelvin competition

Follow-up Master Thesis based on the formulation in terms of **uncertainty** (on-going)

Elements under analysis:

- Development of an **hybrid** quantum-classical algorithm
- Suitable encoding
- Handling of time series
 (considering qubits constraints)

OSIP PhD University of Strathclyde

▶ L. Sànchez & M. Vasile, AA, 2020

Classification of collision events to capture and quantify epistemic **uncertainty** in the estimation of collision probability

Design of corresponding **collision avoidance manoeuvres** (including low-thrust cases), considering operational constraints

Industrial activities

AutoCA (GMV)

► D. Stanculescu et al., 8th ECSD, 2021

On-going activity to develop an operational environment where machine learning models can be leveraged to predict expected **chaser updates** and the resulting **uncertainty evolution**

Development of a **software tool** that **operators** can use to train the machine learning model based on their own **CDM** collection

Integration within an **operational suite** able to handle not only conjunction decision, but also **collision avoidance manoeuvre** design considering operational constraints

ESA's Space Safety Programme

Subscribed by Member States at Space19+ with 434M€ → started Jan 2020

Contribute to the **protection** of our planet, humanity and assets in space and on Earth from hazard originating in space

Need to protect assets through the **monitoring** of the space environment, and to have access to **independent** Space Safety data and services

Structure of the Space Safety Programme

Collision Risk Estimation and Automated Mitigation

Reduce:

- Manpower efforts, especially for large constellations
- Time between manoeuvre decision and close approach
- Number of false alerts

Tasks:

- Automate collision avoidance decisions
- Develop efficient ways to coordinate and command manoeuvres
- Demonstration through newly developed platform or existing missions

Automated avoidance manoeuvre decision and design

Statistics & machine learning methods to identify driving parameters

De-risk activity (Neuraspace) collision risk management approach for New Space Assessment of **robustness** & explainability

Definition of decision criteria

Consider **global optimisation** and application to **low-thrust** missions

Prototype software for full chain

Development and test of late commanding paths and operations concepts S1-CR-02

- Develop operational concepts involving inter-satellite links (ISL)
 - Trade-offs on split between
 on-ground and in-space processing
 - Trade-offs between ISL and large ground station networks
- Handling of **platform** constraints
- Feedback loop for secondary conjunctions
 - SST interface needed for screening
 - ML can support pre-classification of potential response plans
- Preparation for **demonstration** with operators

Means for coordination of operators and catalogue providers S1-CR-03

Current approach	Tasks	Future approach	
Name Email Message	 Assess suitability of existing protocols Prototype implementation Simulation environment Assess performance of different coordination strategies and data needs 	Warning / notification	Decision distribution

11

strategy

coordination

→ THE EUROPEAN SPACE AGENCY

Orbit

information

distribution

*

Supporting activities

Rules4CREAM

SW technologies4CREAM

▶ M. Michel & R. Bertrand, ECSD, 2021

Development of different **rulesets**, also considering current practice in other domains (e.g. Air Traffic Management)

Evaluation of the proposed rulesets in **long-term** environment simulations

Derivation of requirements & constraints for

technologies and data-standards to be developed

Identify safe communication protocols

- Between operators
- With SST data providers (e.g. manoeuvre notification, tracking requests, screening)
 Allows coordination (e.g. smart contracts and distributed ledger technology)
 Access control & Data integrity

12

Conclusions

Space debris is an operational reality with around one collision manoeuvre every three months for the Sentinels. Each of these manoeuvres has a cost: fuel, manpower, data outage.

Changing environment: **improved sensor** capabilities (more objects) and increased traffic (more conjunctions with active satellites)

Interest in **reducing false alerts** and **manoeuvres**. Call for increased process **automation**, both in conjunction analysis and in the coordination process.

Several on-going & upcoming activities within ESA Space Safety Programme.

UNITED NATIONS Office for Outer Space Affairs

SpaceCare

THE COST OF AVOIDING COLLISIONS

The challenge of avoiding collision with space debris has been recognised at an international level. The United Nations Office for Outer Space Affairs published the Space Debris Mitigation Guidelines in 2007, which include the need to limit the chance of accidental collision in orbit.

ESA performs roughly two 'collision avoidance manoeuvres' per year, with each of its Earth-orbiting spacecraft.

The number will increase with the significant rise of global space activity in years to come.

Every time a satellite swerves to avoid collision, something is lost:

Hours spent monitoring skies calculating collision risks and planning manoeuvres

Up-to-date as of December 2020

#SpaceSustainability

·eesa

Science instruments switched off, data not gathered

Dr. Francesca Letizia ESA/ESOC Space Debris Office (OPS-SD) Robert-Bosch-Str. 5, 64293 Darmstadt, Germany T +496151902079 francesca.letizia@esa.int http://www.esa.int/debris

━ ■ ≥ + = + || = ≤ = || || = = + || || = + + + * = = ||