1

Engineered Decision Tree for Judging Spacecraft Collision Risks

Sven Rebhan, Nils Einecke, Viktor Losing, Steffen Limmer, Sebastian Schmitt

Honda Research Institute Europe GmbH, Offenbach, Germany

Side-Workshop -- 8th European Conference on Space Debris 23.04.2020

www.honda-ri.de

Honda Research Institute Europe

- Founded in 2003
- Fundamental research for Honda
- Three sites: Tokyo (Japan), San Jose (US), Offenbach (Germany)

• Research Fields:

Cooperative Intelligence, Learning, Personalization, **Data Analytics**, System Optimization, Cooperative Engineering, **Energy Management**, System Architecture, **Risk and Planning**, Perception and Prediction

Starting Point

- Started to apply wide range of approaches to the problem
- Extraction of time series features, machine learning, random forests, statistical analysis and manual data engineering
- Side note: approaches for risk analysis in traffic scenarios could not be applied \rightarrow based on assumption like known street layout
- All approaches managed to beat the fixed-value baseline

Test HRI algorithms and expertise in different domains

Learn about approaches in other domains

٠

٠

٠

٠

2021/5/11

Check generality

- Best ML approach achieved overall score of 0.83 (final: 0.555) ٠
- Pushing ML approaches further on train set led to performance drop on tests set ٠

- After getting below 1.0 score further advancements led to a suspicious anti-correlation between train and test results
- Further advances with ML approaches were very difficult
- Post-analysis of challenge team revealed:
 - Manual selection of high-risk events changed set characteristics
 - Unluckily a very unfavorable test selection was done

Major Findings in Train Data

 Events slightly above high-low threshold @decision time tend to move to high risk at encounter
 → set close-threshold risks to high risk in a cascade

$$r_{0} = \begin{cases} -5.10, & \text{if} - 7.30 \le r_{-2} < -6.40 \\ -5.60, & \text{if} - 6.40 \le r_{-2} < -6.04 \\ -5.95, & \text{if} - 6.04 \le r_{-2} < -6.00 \end{cases}$$

 Very high-risk events @decision time tend to get less risky at encounter → clip high risks

- 1. Naïve forecast (last risk prediction)
 - $r_0 = r_{-2}$
- 2. c_object_type
 - type=="payload", "rocket body", "tba" \rightarrow r₀=-5.6
- 3. t_span
 - span < 0.5 \rightarrow r₀=-6.00001
- 4. Clip high risks
 - $r_{-2} > -3.5 \rightarrow r_0 = -3.5$
- 5. Risk cascade
 - Slide 5

6. miss_distance

• dist > 30,000 m \rightarrow r₀=-6.00001

Main improvements achieved by <u>risk</u> feature itself!

	leaderboard	final		
technique	score LB	score GT	MSE	F_2
baseline	2.502	2.504	0.679	0.271
naive forecast	0.703	0.681	0.513	0.753
c_object_type	0.685	0.664	0.492	0.742
t_span	0.683	0.670	0.495	0.739
low to high risks	0.648	0.638	0.481	0.754
clip highest risks	0.636	0.635	0.479	0.754
low risk cascade	0.568	0.562	0.411	0.732
miss_distance	0.555	0.555	0.407	0.733

Lessons Learned

- ML on collision avoidance dataset is very difficult
- Risk (r_{2}) value is most significant feature
- Other features seem to have almost no impact
- Time series seem to have very little effect \rightarrow some encounter have strong risk jumps without prior indication

- Post-challenge analysis revealed: decision tree does not generalize well \rightarrow reason I: statistical difference of test and train set \rightarrow reason II: no train-validate splitting for manual engineering
- Insights from decision tree are less informative
- Single steps might improve prediction but require different parameters

Statistical analysis on random splits of all available data

Challenge Insights

- Space collision avoidance shares dilemma with autonomous driving
 → there is almost not data of real impact events
- All events with maneuver actions were removed for challenge
 - \rightarrow only non-critical events are left

(critical events would have an avoidance maneuver and are thus removed)

- Suggestions:
 - gather more data
 - find ways to include maneuver events
 - change approach to predict expert decision
- Multi-objective score might require different leaderboard
 → it might be favorable to use a ranking scheme instead
 - Algorithms are ranked for each objective
 - Algorithm performance is the mean rank

Middlebury	stereo	benchmark	2012

Algorithm	Avg.	Tsukuba ground truth		Venus ground truth		Average percent of bad pixels (<u>explanation</u>)		
	Rank	nonocc	all	<u>disc</u>	nonocc	all	disc	
<u>PMF [119]</u>	12.5	<u>11.0</u> 39	11.4 <u>36</u>	16.0 <u>32</u>	<u>0.72</u> 8	0.92 7	5.27 7	7.69
SegAggr [144]	15.8	<u>12.4</u> 60	12.9 54	17.3 <mark>51</mark>	<u>0.28</u> 1	0.41 1	2.09 1	7.49
LAMC-DSM [123]	17.1	<u>9.34</u> 29	10.1 30	13.5 <u>10</u>	<u>1.48</u> 17	2.10 16	8.19 <mark>23</mark>	9.20
PM-Forest [162]	18.8	<u>11.1</u> 41	11.8 <mark>43</mark>	17.3 <mark>52</mark>	<u>3.11</u> 30	3.14 23	4.57 4	7.80